
 

 

 

DIRECTORATE OF DISTANCE EDUCATION 

UNIVERSITY OF NORTH BENGAL 

 

MASTERS OF SCIENCE-MATHEMATICS 

SEMESTER –II 

 

 

 

 

 

POINT SET TOPOLOGY 

DEMATH-2 CORE-2 

BLOCK-2 

  



 

 

 

UNIVERSITY OF NORTH BENGAL 

Postal Address: 

The Registrar,  

University of North Bengal,  

Raja Rammohunpur,  

P.O.-N.B.U.,Dist-Darjeeling,  

West Bengal,  Pin-734013,  

India.   

Phone: ( O )  +91 0353-2776331/2699008  

Fax:( 0353 )  2776313, 2699001 

Email: regnbu@sancharnet.in ; regnbu@nbu.ac.in 

Wesbsite: www.nbu.ac.in 

 

First Published in 2019 

 

All rights reserved. No Part of this book may be reproduced or transmitted,in any form or by 

any means, without permission in writing from University of North Bengal. Any person who 

does any unauthorised act in relation to this book may be liable to criminal prosecution and 

civil claims for damages. This book is meant for educational and learning purpose. The authors 

of the book has/have taken all reasonable care to ensure that the contents of the book do not 

violate any existing copyright or other intellectual property rights of any person in any manner 

whatsoever. In the even the Authors has/ have been unable to track any source and if any 

copyright has been inadvertently infringed, please notify the publisher in writing for corrective 

action. 

 

 

 

 

 



 

 

FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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UNIT 8 :   COUNTABILITY AND 

SEPARATION AXIOMS-I 
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8.0 OBJECTIVE 
 

 Learn countability and separation Axiom 

 Learn Regular and Normal Topological Space 

 Learn Invarient , Orientability and Mobius  

 Learn Genus and Euler Characteristic 

 

8.1 INTRODUCTION.  
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In topology and related fields of mathematics, there are several 

restrictions that one often makes on the kinds of topological spaces that 

one wishes to consider. Some of these restrictions are given by 

the separation axioms. These are sometimes called Tychonoff separation 

axioms, after Andrey Tychonoff. 

The separation axioms are axioms only in the sense that, when defining 

the notion of topological space, one could add these conditions as extra 

axioms to get a more restricted notion of what a topological space is. The 

modern approach is to fix once and for all the axiomatization of 

topological space and then speak of kinds of topological spaces. 

However, the term "separation axiom" has stuck. The separation axioms 

are denoted with the letter "T" after the German Trennungsaxiom, which 

means "separation axiom." 

The precise meanings of the terms associated with the separation axioms 

has varied over time, as explained in History of the separation axioms. It 

is important to understand the authors' definition of each condition 

mentioned to know exactly what they mean, especially when reading 

older literature. 

1.1 Countability Properties 
There are two basic themes to the next several sections:  

  a. What properties of a topology allow us to conclude that the topology 

is given by a metric? 

  b. What properties of a space allow us to conclude that the space 

actually is (homeomorphic to) a subspace of R n (or at least a subspace 

of Rω )?  

Countability Properties:  Here are several properties of spaces, all 

saying that the topology, or some key feature of it, can be described in 

terms of countably many pieces of information. The names are historical; 

they are not very descriptive or otherwise useful, but you should know 

them since they are used in the literature.  

            (1) ―First axiom of countability‖ The space (X, T ) is called first-

countable if the topology has a countable local basis at each point x ∈ X.  

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Andrey_Tychonoff
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Axiomatization
https://en.wikipedia.org/wiki/German_language
https://en.wikipedia.org/wiki/History_of_the_separation_axioms
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              (2) ‖Second axiom of countability‖ The space (X, T ) is called 

second-countable if the topology T has a countable basis.  

              (3) ‖Separable‖ The space (X, T ) is called separable if X 

contains a countable dense subset. Recall a subset A ⊆ X is called dense 

in X if the closure A¯ is all of X, i.e. each open set contains at least one 

point of A. 

              (4) Lindel¨of property The space (X, T ) is called a Lindel¨of 

space if each open cover of X has a countable sub-cover.  

              The familiar space R n , with the standard topology has all of the 

above properties (proof below). For more general spaces, we can ask 

many questions:  

        • Do any of these properties imply others? 

         • If a space X has one of the properties, do all subspaces of X have 

the property? (In that always happens, we would call the property 

hereditary.) 

          • If we have a family of spaces with one of these properties, does 

the cartesian product have the property?  

           • If f : X → Y is a continuous surjection, and X has one of the 

properties, must Y also have the property?  

           • If (X, T ) has one of these properties, and T ′ is a coarser [resp. 

finer] topology, must (X, T ′ ) have the property? 

We will focus on just some highlights. 

Theorem . Countable basis =⇒ all the other countability properties. 

Proof. Suppose B is a countable basis for the topology on X. 

a. Countable local basis: Let x ∈ X and let U be any neighborhood 

of x. Since B is a basis for the topology, U is a union of elements 

of B. Thus there exists an element B ∈ B such that x ∈ B ⊆ U. So 

the set B is a countable local basis for each point x ∈ X. 
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b. .Separable: For each nonempty set B ∈ B, pick a point xB ∈ B. 

Since B is countable, the set {xB | B ∈ B} is countable. Since 

each open set is a union of elements of B, each nonempty open 

set U contains at least one of the sets B and so xB ∈ U. Thus {xB 

| B ∈ B} is dense in X. 

c. Lindel¨of : Let {Uα}α∈J be an open cover of X. We want to 

prove there exists a countable subcover, by somehow using the 

existence of a countable basis B for the topology. For 

convenience (to make the exact argument a little simpler), assume 

that one of the sets Uα is actually the empty set. (Or adjoin one 

additional set U0 = ∅ to the covering.) The idea of the proof is to 

use the elements of B to ―point to‖ certain special Uα‘s. 

Specifically, for each set B ∈ B, we will select one set UB from 

among the Uα‘s as follows: First ask if there exists at least one of 

the open sets Uα containing that set B. If not, let UB = U0 = ∅. If 

the set B is contained in some Uα, then pick one such Uα and call 

it UB. We might pick the same Uα corresponding to several B‘s 

(because a given Uα usually contains many basis sets), but we 

have at most one Uα chosen for each B; so the set {UB : B ∈ B} 

is countable. We now show that {UB : B ∈ B} covers X. Let x ∈ 

X. We shall prove that at least one of the sets UB contains x. 

Since the Uα‘s cover X, there is some Uα containing x. Since B is 

a basis, there exists B ∈ B with x ∈ B ∈ Uα. Since that basis set B 

is contained in some Uα, B is one of the basis sets for which we 

chose a set UB ⊇ B. So x ∈ B ⊆ UB, in particular x ∈ UB. 

The previous theorem says that having a countable basis for the topology 

is the strongest of the countability properties. The next example shows 

that it is strictly stronger, that is the other properties do not imply it. 

Example. The space Rℓ is first-countable, separable, and Lindel¨of , 

but not second-countable. 

Proof. The details are given in the text; you should be able to prove Rℓ is 

first-countable and separable, and that it is not second-countable. You are 

not required to know the proof that Rℓ is Lindel¨of . 
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The previous example shows some of the independence of the properties. 

However, in metric spaces, the first-countable, separable, and second-

countable properties are equivalent. 

Theorem . Suppose X is a metric space. Then 

i. X has countable local bases at each point. 

ii.  X separable =⇒ X has a countable basis. 

iii.  X Lindel¨of =⇒ X has a countable basis. 

Proof. i. The idea of ―countable local basis‖ is precisely a generalization 

of the balls of radius 1/n in metric spaces: The set {B(x, 1 n )} is a local 

basis at x 

ii. Let {xn}n∈N be a countable dense set in X. For each xn, let Bn be the 

set of all open balls centered at xn with rational radius. Then the set Bn is 

countable for each n, so the set B = ∪{Bn : n ∈ N} is countable. We 

claim this set B is a basis. The proof is an exercise in using the triangle 

inequality that the metric satisfies. (You can work out the details: here is 

the idea...) Take any open set U ⊆ X. We want to show that U is a union 

of our alleged basis elements. Let y be any point of U; we shall show that 

there is one of our alleged basis sets B such that y ∈ B ⊆ U. The point y 

is contained in some ǫ ball inside U. Now look at an ǫ/100 ball around y. 

This ball must contain some point xn from our countable dense subset. 

So the distance from xn to y is less than ǫ/100. Then by picking a 

rational radius slightly larger than ǫ/100, we can find a rational-radius 

ball centered at xn, containing y, and contained in U. 

iii  For each n, consider the open covering of X consisting of all balls of 

radius 1/n. The Lindel¨of property says there exists a countable subcover 

Bn. Let B = ∪{Bn n ∈ N}. This is a countable union of countable sets, 

hence countable. Check that it is indeed a basis. 

Remark. The the preceding proofs, it might seem that all we need is 

―separable + countable local basis‖ or ―Lindel¨of + countable local basis‖ 

to conclude that X has a countable basis. But remember the previous 

example of a space that IS separable, DOES have the Lindel¨of property, 

DOES have a countable local basis at each point, but does not have a 
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countable basis for the topology. The triangle inequality property of 

metrics provides an extra amount of ―niceness‖ for the topology, so we 

can connect from one property to the other. 

Now let us consider subspaces and cartesian products. 

Theorem. The properties countable local basis and countable basis 

are preserved for subspaces and for countable cartesian products. 

Proof. Proofs are given in the text. 

Theorem. The Lindel¨of property is inherited by closed subspaces 

(analogous to compactness). 

Example. The property of being separable need not be inherited by 

subspaces; having the subspace be closed seems irrelevant to this 

question.  

The space Rℓ × Rℓ is separable but the diagonal line {(x, −x) : x ∈ R} is 

a closed subspace that is homeomorphic to R with the discrete topology. 

This uncountable closed discrete subspace makes R 2 ℓ a useful 

counterexample for several questions. It shows that being separable is 

not hereditary, the Lindel¨of property is not always preserved by finite 

products, and [next section] the property of being normal is not always 

preserved by finite products.. 

8.2 PROPERTIES OF FIRST COUNTABLE 

TOPOLOGICAL SPACES 
 

Theorem. If (X, J ) is a first countable topological space then for 

each x ∈ X there exists a countable local base say {Vn(x)} ∞ n=1 such 

that Vn+1(x) ⊆ Vn(x) 

Proof. Fix x ∈ X. Now (X, J ) is a first countable topological space 

implies there exists a countable local base say  
n=1

Un


 at x. Let Vn(x) = 

U1 ∩ U2 ∩ · · · ∩ Un then 
n=1

Vn(x)


is a collection of open sets such 

that Vn+1(x) ⊆ Vn(x) for all n ∈ N. So, it is enough to prove that 
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n=1

Vn(x)


is a local base at x. So start with an open set V containing x. 

Now  
n=1

Un


 is a local base at x and V is an open set containing x 

implies there exists n0 ∈ N such that Un0 ⊆ V . By the definition of 

Vn(x) 0 s we have Vn0 (x) ⊆ Un0 . Hence we have the following: for 

each open set V containing x there exists n0 ∈ N such that Vn0 (x) ⊆ V . 

This implies that {Vn(x)} is a local base at x satisfying Vn+1(x) ⊆ Vn(x) 

for all n ∈ N. 

Let us use the above characterization of a first countable base to show 

that, in some sense, first countable topological spaces behave like metric 

spaces. 

Theorem. Let (X, J ) be a first countable topological space and A be 

a nonempty subset of X. Then for each x ∈ X, x ∈ A if and only if 

there exists a sequence  
n=1

xn


in A such that xn → x as n → ∞. 

Proof. First let us assume that x ∈ A. Now (X, J ) is a first countable 

topological space implies there exists a countable local base say B = 

{Vn} ∞ n=1 such that Vn+1 ⊆ Vn, for all n ∈ N. Hence x ∈ A implies A 

∩ Vn 6= θ, for each n ∈ N. Let xn ∈ A ∩ Vn. Claim: xn → x as n → ∞. 

   So start with an open set U containing x (enough to start with Vn) then 

there exists n0 ∈ N such that x ∈ Vn0 ⊆ U. Hence xn ∈ Vn ⊆ Vn0 ⊆ U 

for all n ≥ n0. That is xn ∈ U for all n ≥ n0. This means xn → x as n → 

∞. 

          Conversely, suppose there exists a sequence {xn} ∞ n=1 in A such 

that xn → x. Then for each open set U containing x there exists a positive 

integer n0 such that xn ∈ U for all n ≥ n0. In particular xn0 ∈ U ∩ A. 

Hence for each open set U containing x, U ∩ A 6= θ and this implies x ∈ 

A 

Theorem Let X and Y be topological spaces and further suppose X is 

a first countable topological space. Then a function f : X → Y is 

continuous at a point x ∈ X if and only if for every sequence {xn} ∞ 
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n=1 in X, xn → x as n → ∞, then the sequence {f 
n=1

xn


 converges to 

f(x) in Y. 

Proof. Assume that f : X → Y is continuous at a point x ∈ X. Also 

assume that {xn} ∞ n=1 is a sequence in X such that xn → x as n → ∞. 

To prove: f(xn) → f(x) in Y . So start with an open set V in Y containing 

f(x). Since f is continuous at x, U = f −1 (V ) is an open set in X. Now 

f(x) ∈ V implies x ∈ f −1 (V ) = U. That is U is an open set containing x. 

Hence xn → x implies there exists n0 ∈ N such that xn ∈ U for all n ≥ n0 

. This implies f(xn) ∈ V for all n ≥ n0. That is, whenever xn → x as n → 

∞ then f(xn) → f(x) as n → ∞. 

            Conversely, suppose that {xn} is a sequence in X, xn → x as n → 

∞ implies f(xn) → f(x). Now we will have to prove that f is continuous at 

x. It is to be noted that to prove this converse part we will make use of 

the fact that X is a first countable space. Now X is a first countable space 

implies there exists a local base  
n=1

Vn(x)


at x such that Vn+1 ⊆ Vn 

for all n ∈ N. We will use the method of proof by contradiction. If f is 

not continuous at x then there should exist an open set W containing f(x) 

such that f(U) * W for any open set U containing x. In particular for such 

an open set W, f(Vn) * W for all n = 1, 2, 3, . . .. Hence there exists xn ∈ 

Vn such that f(xn) W 

                 Claim: xn → x as → ∞. So start with an open set V in X 

containing x. Now {Vn} ∞ n=1 is a local base at x implies there exists n0 

∈ N such that Vn0 ⊆ V . Hence xn ∈ Vn ⊆ Vn0 ⊆ V for all n ≥ n0. That 

is for each open set V containing x there exists n0 ∈ N such that xn ∈ V 

for all n ≥ n0. Hence xn → x as n → ∞. But this sequence {xn} in X is 

such that f(xn) ∈/ W, where W is an open set containing f(x). So we have 

arrived at a contradiction to our assumption namely xn ∈ X, xn → x ∈ X 

implies f(xn) → f(x). We arrived at this contradiction by assuming f is 

not continuous at x. Therefore our assumption is wrong and hence f is 

continuous at x. 

Example 5.2.4. Let Jc = {A ⊆ R : Ac is countable or Ac = R}, the co-

countable topology on R, and X = (R,Jc), Y = (R,Js), where Js is the 
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standard topology on R. Define f : X → Y as f(x) = x for all x ∈ X. 

Suppose {xn} is a sequence in X such that {xn} converges to x ∈ X = R. 

Then it is easy to prove that there exists n0 ∈ N such that xn = x for all n 

≥ n0. (If this statement is not true then there exists a subsequence 

 
k=1

xn


 of  
n=1

xn


such that xnk 6= x for all k ∈ N. Then 

U = RK{xnk : k ∈ N} is an open set in X containing x. Hence {xn} 

converges to x in X implies there exists n0 ∈ N such that xn ∈ U for all n 

≥ n0. In particular for k ≥ n0, nk ≥ k ≥ n0 and this implies xnk ∈ U.) So 

we have the following: xn → x in X implies f(xn) → f(x) in Y. But the 

given function f : X → Y is not a continuous function (note: f −1 (0, 1) = 

(0, 1) is not an open set in (R,Jc)). This example does not give any 

contradiction to theorem 5.2.3. From this example we conclude that X = 

(R,Jc) is not a first countable topological space 

8.3 REGULAR AND NORMAL 

TOPOLOGICAL SPACES 
 

Definition. A topological space (X, J ) is called a T1 space if for each 

x ∈ X, the singleton set {x} is a closed set in (X, J ). 

Definition A T1-topological space (X, J ) is called a regular space if 

for each x ∈ X and for each closed subset A of X with x /∈ A, there 

exist open sets U, V in X satisfying the following: 

                      (i) x ∈ U, A ⊆ V ,            (ii) U ∩ V = υ. 

Result 5.3.3. Every regular topological space (X, J ) is a Hausdorff space. 

Proof. Let x, y ∈ X, x 6= y. By definition every regular space is a T1-

space. Hence {y} is a closed set. Also x 6= y implies x /∈ A = {y}. Now 

{y} is a closed set which does not contain x. Since (X, J ) is a regular 

space, there exist open sets U, V in X satisfying the following: 

(i) x ∈ U, A = {y} ⊆ V , 

(ii) U ∩V = θ that is U, V are open sets in X such that x ∈ U, y ∈ 

V and U ∩V = θ. Hence (X, J ) is a Hausdorff topological 

space. 
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Exercise 5.3.4. Prove that every Hausdorff space is a T1-space 

Example 5.3.5. Let X be an infinite set and Jf be the cofinite topology on 

X. Then (X, Jf ) is a T1-space, but (X, Jf ) is not a Hausdorff space. For 

each x ∈ X, U = XK{x} is an open set. Hence U c = XKU = {x} is a 

closed set in X. That is for each x ∈ X, the singleton set {x} is a closed 

set. Therefore (X, J ) is a T1 - space. Take any x, y ∈ X, x 6= y. Suppose 

there exist open sets U, V in X such that x ∈ U, y ∈ V and U ∩ V = θ. 

Now U, V are nonempty open subsets of the cofinite topological space 

(X, Jf ) implies U c , V c are finite sets. Hence X = θ c = (U ∩ V ) c = U 

c ∪ V c is a finite set. Therefore there cannot exist any open sets U, V in 

(X, Jf ) satisfying x ∈ U, y ∈ V and U ∩V = θ. This means (X, Jf ) is not 

a Hausdorff space. 

Now let us give an example of a topological space which is Hausdorff 

but not regular. Take X = R and BK = {(a, b), (a, b)KK : a, b ∈ R, a < b}, 

where K = {1, 1 2 , 1 3 , . . .}. Now it is easy to prove that (left as an 

exercise) BK is a basis for a topology on R. Let JK be the topology on R 

generated by BK. If J is the usual topology on R then we know that J is 

generated by B = {(a, b) : a, b ∈ R, a < b}. Since we have B ⊆ BK and 

this implies that J = JB ⊆ JBK = JK. From this, it is clear that (R, JK) is a 

Hausdorff space. For x, y ∈ R, x 6= y, (R,J ) is a Hausdorff space implies 

there exist open sets U and V in (R, J ) such that x ∈ U, y ∈ V and U ∩ V 

= θ. But J ⊆ JK. Hence U, V ∈ JK are such that x ∈ U, y ∈ V and U ∩ V 

= θ and this shows that (X, JK) is a Hausdorff topological space. 

Is K = {1, 1 2 , 1 3 , . . .} a closed set? Here K is a subset of R and J , JK 

are two different topologies on R, 0 ∈ K and 0 ∈/ K with respect to (R,J 

). Hence K is not a closed set in (R, J ). But RKK = ∞ ∪ n=1 An, where 

An = (−n, n)KK for each n ∈ N. Each An is an open set in (R, JK) 

implies RKK is an open set in (R, JK). This implies K is a closed set in 

(R, JK). Also 0 ∈/ K. What are the open sets containing K? If V is an 

open set containing K, then for each n ∈ N, 1 n ∈ V, there exists a basic 

open set say (an, bn) such that 1 n ∈ (an, bn) ⊆ V ( 1 n ∈/ (an, bn)KK) 

and 0 < an < bn implies K ⊆ ∞ ∪ k=1 (ak, bk) ⊆ V. 
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                 Suppose U, V are open sets such that 0 ∈ U and K ⊆ V . Since 

0 ∈ U, there exists a basic open set B such that 0 ∈ B ⊆ U. If B is of the 

form (a, b) then (a, b) ∩ K 6= θ. So U ∩V 6= θ. If B is of the form (a, 

b)KK, choose n0 ∈ N such that 1 n0 < b. Since 1 n0 ∈ V, there exists an 

open interval (c, d) such that 1 n0 ∈ (c, d) ⊆ V. Now since (a, b) ∩ (c, d) 

is not empty (it contains 1 n0 ), it is an interval and hence uncountable. 

As K is countable, ((a, b) ∩ (c, d))KK 6= θ, i.e, ((a, b)KK) ∩ (c, d) 6= θ. 

Therefore U ∩ V 6= θ. 

So we have proved that there cannot exist open sets U, V in (R, JK) with 

0 ∈ U, K ⊆ V and U ∩ V = θ. This shows that (R, JK) is not a regular 

space. 

Check In Progress 

Q. 1 Define Regular Space.  

Solution : 

……………………………………………………………………………

……………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………….………………………

………………………………………………………………… 

Q. 2 Define Countability. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………….………………………

………………………………………………………………… 

8.4 SEPARATION AXIOM 
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In topology and related fields of mathematics, there are several 

restrictions that one often makes on the kinds of topological spaces that 

one wishes to consider. Some of these restrictions are given by 

the separation axioms. These are sometimes called Tychonoff separation 

axioms, after Andrey Tychonoff. 

The separation axioms are axioms only in the sense that, when defining 

the notion of topological space, one could add these conditions as extra 

axioms to get a more restricted notion of what a topological space is. The 

modern approach is to fix once and for all the axiomatization of 

topological space and then speak of kinds of topological spaces. 

However, the term "separation axiom" has stuck. The separation axioms 

are denoted with the letter "T" after the German Trennungsaxiom, which 

means "separation axiom." 

The precise meanings of the terms associated with the separation axioms 

has varied over time, as explained in History of the separation axioms. It 

is important to understand the authors' definition of each condition 

mentioned to know exactly what they mean, especially when reading 

older literature. 

Preliminary Definitions 

Before we define the separation axioms themselves, we give concrete 

meaning to the concept of separated sets (and points) in topological 

spaces. (Separated sets are not the same as separated spaces, defined in 

the next section.) 

The separation axioms are about the use of topological means to 

distinguish disjoint sets and distinct points. It's not enough for elements 

of a topological space to be distinct (that is, unequal); we may want them 

to be topologically distinguishable. Similarly, it's not enough 

for subsets of a topological space to be disjoint; we may want them to 

be separated (in any of various ways). The separation axioms all say, in 

one way or another, that points or sets that are distinguishable or 

separated in some weak sense must also be distinguishable or separated 

in some stronger sense. 

Let X be a topological space. Then two 

points x and y in X are topologically distinguishable if they do not have 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Andrey_Tychonoff
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Axiomatization
https://en.wikipedia.org/wiki/German_language
https://en.wikipedia.org/wiki/History_of_the_separation_axioms
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Disjoint_set
https://en.wikipedia.org/wiki/Distinct_(mathematics)
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Subset
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exactly the same neighbourhoods (or equivalently the same open 

neighbourhoods); that is, at least one of them has a neighbourhood that is 

not a neighbourhood of the other (or equivalently there is an open set that 

one point belongs to but the other point does not). 

Two points x and y are separated if each of them has a neighbourhood 

that is not a neighbourhood of the other; that is, neither belongs to the 

other's closure. More generally, two subsets A and B of X are separated if 

each is disjoint from the other's closure. (The closures themselves do not 

have to be disjoint.) All of the remaining conditions for separation of sets 

may also be applied to points (or to a point and a set) by using singleton 

sets. Points x and y will be considered separated, by neighbourhoods, by 

closed neighbourhoods, by a continuous function, precisely by a 

function, if and only if their singleton sets {x} and {y} are separated 

according to the corresponding criterion. 

Subsets A and B are separated by neighbourhoods if they have disjoint 

neighbourhoods. They are separated by closed neighbourhoods if they 

have disjoint closed neighbourhoods. They are separated by a continuous 

function if there exists a continuous function f from the space X to 

the real line R such that the image f(A) equals {0} and f(B) equals {1}. 

Finally, they are precisely separated by a continuous function if there 

exists a continuous function f from X to R such that the preimage f
−1

({0}) 

equals A and f
−1

({1}) equals B. 

These conditions are given in order of increasing strength: Any two 

topologically distinguishable points must be distinct, and any two 

separated points must be topologically distinguishable. Any two 

separated sets must be disjoint, any two sets separated by 

neighbourhoods must be separated, and so on. 

For more on these conditions (including their use outside the separation 

axioms), see the articles Separated sets and Topological 

distinguishability. 

Main definitions 

These definitions all use essentially the preliminary definitions above. 

https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Real_line
https://en.wikipedia.org/wiki/Image_(function)
https://en.wikipedia.org/wiki/Preimage
https://en.wikipedia.org/wiki/Separated_sets
https://en.wikipedia.org/wiki/Topological_distinguishability
https://en.wikipedia.org/wiki/Topological_distinguishability
https://en.wikipedia.org/wiki/Separation_axiom#Preliminary_definitions
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Many of these names have alternative meanings in some of mathematical 

literature, as explained on History of the separation axioms; for example, 

the meanings of "normal" and "T4" are sometimes interchanged, similarly 

"regular" and "T3", etc. Many of the concepts also have several names; 

however, the one listed first is always least likely to be ambiguous. 

Most of these axioms have alternative definitions with the same 

meaning; the definitions given here fall into a consistent pattern that 

relates the various notions of separation defined in the previous section. 

Other possible definitions can be found in the individual articles. 

In all of the following definitions, X is again a topological space. 

 X is T0, or Kolmogorov, if any two distinct points 

in X are topologically distinguishable. (It will be a common theme 

among the separation axioms to have one version of an axiom that 

requires T0 and one version that doesn't.) 

 X is R0, or symmetric, if any two topologically distinguishable points 

in X are separated. 

 X is T1, or accessible or Fréchet or Tikhonov, if any two distinct 

points in X are separated. Thus, X is T1 if and only if it is both T0 and 

R0. (Although you may say such things as "T1 space", "Fréchet 

topology", and "suppose that the topological space X is Fréchet"; 

avoid saying "Fréchet space" in this context, since there is another 

entirely different notion of Fréchet space in functional analysis.) 

 X is R1, or preregular, if any two topologically distinguishable points 

in X are separated by neighbourhoods. Every R1 space is also R0. 

 X is Hausdorff, or T2 or separated, if any two distinct points in X are 

separated by neighbourhoods. Thus, X is Hausdorff if and only if it is 

both T0 and R1. Every Hausdorff space is also T1. 

 X is T2½, or Urysohn, if any two distinct points in X are separated by 

closed neighbourhoods. Every T2½ space is also Hausdorff. 

 X is completely Hausdorff, or completely T2, if any two distinct 

points in X are separated by a continuous function. Every completely 

Hausdorff space is also T2½. 

 X is regular if, given any point x and closed set F in X such 

that x does not belong to F, they are separated by neighbourhoods. 

https://en.wikipedia.org/wiki/History_of_the_separation_axioms
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/T0_space
https://en.wikipedia.org/wiki/Topological_distinguishability
https://en.wikipedia.org/wiki/R0_space
https://en.wikipedia.org/wiki/T1_space
https://en.wikipedia.org/wiki/Fr%C3%A9chet_space
https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/R1_space
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Urysohn_space
https://en.wikipedia.org/wiki/Completely_Hausdorff_space
https://en.wikipedia.org/wiki/Regular_space
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(In fact, in a regular space, any such x and F will also be separated by 

closed neighbourhoods.) Every regular space is also R1. 

 X is regular Hausdorff, or T3, if it is both T0 and regular.
[1]

 Every 

regular Hausdorff space is also T2½. 

 X is completely regular if, given any point x and closed 

set F in X such that x does not belong to F, they are separated by a 

continuous function. Every completely regular space is also regular. 

 X is Tychonoff, or T3½, completely T3, or completely regular 

Hausdorff, if it is both T0 and completely regular.
[2]

 Every Tychonoff 

space is both regular Hausdorff and completely Hausdorff. 

 X is normal if any two disjoint closed subsets of X are separated by 

neighbourhoods. (In fact, a space is normal if and only if any two 

disjoint closed sets can be separated by a continuous function; this 

is Urysohn's lemma.) 

 X is normal Hausdorff, or T4, if it is both T1 and normal. Every 

normal Hausdorff space is both Tychonoff and normal regular. 

 X is completely normal if any two separated sets are separated by 

neighbourhoods. Every completely normal space is also normal. 

 X is completely normal Hausdorff, or T5 or completely T4, if it is both 

completely normal and T1. Every completely normal Hausdorff 

space is also normal Hausdorff. 

 X is perfectly normal if any two disjoint closed sets are precisely 

separated by a continuous function. Every perfectly normal space is 

also completely normal. 

 X is perfectly normal Hausdorff, or T6 or perfectly T4, if it is both 

perfectly normal and T1. Every perfectly normal Hausdorff space is 

also completely normal Hausdorff. 

8.4.1 Other Separation Axioms 

There are some other conditions on topological spaces that are 

sometimes classified with the separation axioms, but these don't fit in 

with the usual separation axioms as completely. Other than their 

definitions, they aren't discussed here; see their individual articles. 

 X is sober if, for every closed set C that is not the (possibly 

nondisjoint) union of two smaller closed sets, there is a unique 

https://en.wikipedia.org/wiki/Regular_Hausdorff_space
https://en.wikipedia.org/wiki/Separation_axiom#cite_note-1
https://en.wikipedia.org/wiki/Completely_regular_space
https://en.wikipedia.org/wiki/Tychonoff_space
https://en.wikipedia.org/wiki/Separation_axiom#cite_note-2
https://en.wikipedia.org/wiki/Normal_space
https://en.wikipedia.org/wiki/Urysohn%27s_lemma
https://en.wikipedia.org/wiki/Normal_Hausdorff_space
https://en.wikipedia.org/wiki/Completely_normal_space
https://en.wikipedia.org/wiki/Completely_normal_Hausdorff_space
https://en.wikipedia.org/wiki/Perfectly_normal_space
https://en.wikipedia.org/wiki/Perfectly_normal_Hausdorff_space
https://en.wikipedia.org/wiki/Sober_space
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point p such that the closure of {p} equals C. More briefly, every 

irreducible closed set has a unique generic point. Any Hausdorff 

space must be sober, and any sober space must be T0. 

 X is weak Hausdorff if, for every continuous map f to X from a 

compact Hausdorff space, the image of f is closed in X. Any 

Hausdorff space must be weak Hausdorff, and any weak Hausdorff 

space must be T1. 

 X is semiregular if the regular open sets form a base for the open sets 

of X. Any regular space must also be semiregular. 

 X is quasi-regular if for any nonempty open set G, there is a 

nonempty open set H such that the closure of H is contained in G. 

 X is fully normal if every open cover has an open star 

refinement. X is fully T4, or fully normal Hausdorff, if it is both 

T1 and fully normal. Every fully normal space is normal and every 

fully T4 space is T4. Moreover, one can show that every fully 

T4 space is paracompact. In fact, fully normal spaces actually have 

more to do with paracompactness than with the usual separation 

axioms. 

8.5 FIRST AND SECOND COUNTABLE 

TOPOLOGICAL SPACES  
 

Definition 5.1.1. A topological space (X, J ) is said to have a countable 

local basis (or countable basis) at a point x ∈ X if there exists a countable 

collection say Bx of open sets containing x such that for each open set U 

containing x there exists V ∈ Bx with V ⊆ U. 

 Definition 5.1.2. A topological space (X, J ) is said to be first countable 

or said to satisfy the first countability axiom if for each x ∈ X there exists 

a countable local base at x.  

Examples 5.1.3. (i). Let (X, d) be a metric space then for each x ∈ X, Bx 

= {B(x, 1 n ) : n ∈ N} is a countable local basis at x. Hence (X, Jd) is a 

first countable space. So, we say that every metric space (X, d) is a first 

countable space.  

https://en.wikipedia.org/wiki/Weak_Hausdorff_space
https://en.wikipedia.org/wiki/Semiregular_space
https://en.wikipedia.org/wiki/Regular_open_set
https://en.wikipedia.org/wiki/Base_(topology)
https://en.wikipedia.org/w/index.php?title=Quasi-regular_space&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fully_normal_space
https://en.wikipedia.org/wiki/Open_cover
https://en.wikipedia.org/wiki/Star_refinement
https://en.wikipedia.org/wiki/Star_refinement
https://en.wikipedia.org/wiki/Fully_T4_space
https://en.wikipedia.org/wiki/Paracompact
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(ii). Let X = N and J = {θ, X, {1}, {1, 2}, . . . , {1, 2, . . . , n}, . . . , } then 

obviously (X,J ) is a first countable topological space. Note that this is 

not an interesting example of a first countable topological space. Once 

the topology J is a countable collection then (X, J ) is a first countable 

space.  

Example 5.1.4. Let X = R and Jl be the lower limit topology on R 

generated by {[a, b) : a, b ∈ R, a < b}. For each x ∈ X, Bx = {[x, x + 1 n 

) : n ∈ N} is a countable 111 local base at x. Hence (R, Jl) = Rl is a first 

countable topological space. Now let us see a stronger version of first 

countable topological space. 

8.5.1 Invariant properties 

Unlike curves and surfaces, higher dimensional manifolds cannot be 

understood by means of visual intuition. Indeed, it is difficult or even 

impossible to decide whether two different descriptions of a higher-

dimensional manifold refer to the same object. For this reason it is useful 

to develop concepts and criteria that describe intrinsic geometric and 

topological aspects of these mathematical objects. Such criteria are 

commonly referred to as being invariant, because they are the same 

relative to all possible descriptions of a particular manifold. Thus, it is 

possible to distinguish two manifolds if they disagree with respect to 

some invariant property. Naively, one could hope to develop an arsenal 

of invariant criteria that would definitively classify all manifolds up to 

isomorphism. Unfortunately, it is known that for manifolds of dimension 

4 and higher, no single decision procedure can be used to decide whether 

two manifolds have the same topological configuration. 

Some invariant properties are local, and serve to characterize manifolds 

at the smallest of scales. Other invariant properties are global, and take 

account of a manifold's overall spatial structure. Many invariant 

properties relevant to manifold theory come from point set topology. 

Separability of points, or the Hausdorff property is one such invariant, 

dimension (see below) is another. Compactness, connectedness, 

and paracompactness are important global properties. However, many 

mathematicians consider separability of points and paracompactness to 

be so essential that they include them in the very definition of manifold. 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/t/Topology.htm
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Algebraic topology is a source of a number of important global invariant 

properties. Some key criteria include the simply connected property and 

orientability (see below). Indeed several branches of mathematics, such 

as homology and homotopy theory, and the theory of characteristic 

classes were founded in order to study invariant properties of manifolds. 

It is often said that, aside from dimension, a differential manifold has no 

local invariants. However, if a manifold is endowed with some geometric 

information, such Riemannian structure, then invariant local properties 

may arise. Examples include the notions of flatness and constant 

curvature for Riemannian manifolds, and the absence of torsion for 

manifolds equipped with an affine connection. 

8.5.2 Orientability 

In dimensions two and higher, a simple but important invariant criterion 

is the question of whether a manifold admits ameaningful orientation. 

Consider a topological manifold with charts mapping to R
n
. Given 

an ordered basis for R
n
, a chart causes its piece of the manifold to itself 

acquire a sense of ordering, which in3 dimensions can be viewed as 

either right-handed or left-handed. Overlapping charts are not required to 

agree in their sense of ordering, which gives manifolds an important 

freedom. For some manifolds, like the sphere, charts can be chosen so 

that overlapping regions agree on their "handedness"; these 

are orientable manifolds. For others, this is impossible. The latter 

possibility is easy to overlook, because any closed surface embedded 

(without self-intersection) in three-dimensional space is orientable. 

Some illustrative examples of non-orientable manifolds include: (1) 

the Möbius strip, which is a manifold with boundary, (2) the Klein bottle, 

which must intersect itself in 3-space, and (3) the real projective plane, 

which arises naturally in geometry. 

Check In Progress 

Q. 1 Define Seperation Axioms.  

Solution : 

……………………………………………………………………………

……………………………………………………………………………

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/g/Geometry.htm
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…………………….………………………………………………………

…………………………………………………………………………… 

Q. 2 Write Seperation Properties. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

…………………….……………………………………………………… 

 8.5.3 Möbius Strip 

Begin with an infinite circular cylinder standing vertically, a manifold 

without boundary. Slice across it high and low to produce two circular 

boundaries, and the cylindrical strip between them. This is an orientable 

manifold with boundary, upon which "surgery" will be performed. Slice 

the strip open, so that it could unroll to become a rectangle, but keep a 

grasp on the cut ends. Twist one end 180°, making the inner surface face 

out, and glue the ends back together seamlessly. This results in a strip 

with a permanent half-twist: the Möbius strip. Its boundary is no longer a 

pair of circles, but (topologically) a single circle; and what was once its 

"inside" hasmerged with its "outside", so that it now has only 

a single side. 

Klein bottle 

Take two Möbius strips; each has a single loop as a boundary. Straighten 

out those loops into circles, and let the strips distort into cross-caps. 

Gluing the circles together will produce a new, closed manifold without 

boundary, the Klein bottle. Closing the surface does nothing to improve 

the lack of orientability, it merely removes the boundary. Thus, the Klein 

bottle is a closed surface with no distinction between inside and outside. 

Note that in three-dimensional space, a Klein bottle's surface must pass 

through itself. Building a Klein bottle which is not self-intersecting 

requires four or more dimensions of space. 

Real projective plane 

Begin with a sphere centered on the origin. Every line through the origin 

pierces the sphere in two opposite points called antipodes. Although 

there is no way to do so physically, it is possible to mathematically 
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merge each antipode pair into a single point. The closed surface so 

produced is the real projective plane, yet another non-orientable surface. 

It has a number of equivalent descriptions and constructions, but this 

route explains its name: all the points on any given line through the 

origin project to the same "point" on this "plane". 

8.5.4.1 Genus and the Euler characteristic 

For two dimensional manifolds a key invariant property is the genus, or 

the "number of handles" present in a surface. A torus is a sphere with one 

handle, a double torus is a sphere with two handles, and so on. Indeed it 

is possible to fully characterize compact, two-dimensional manifolds on 

the basis of genus and orientability. In higher-dimensional manifolds 

genus is replaced by the notion of Euler characteristic. 

8.5.4.2 Dimension 

Dimensionality is built right into the definition of an n-manifold. 

Dimension is a local invariant, but it does not change as one moves 

inside the manifold. However in some settings it is convenient to allow a 

single manifold to consist of several disconnected pieces, each of its own 

dimension. 

8.5.5 Generalizations of Manifolds 

Orbifolds: An orbifold is a generalization of manifold allowing for 

certain kinds of " singularities" in the topology. Roughly speaking, it is a 

space which locally looks like the quotients of some simple space 

(e.g. Euclidean space) by the actions of various finite groups. The 

singularities correspond to fixed points of the group actions, and the 

actions must be compatible in a certain sense. 

Algebraic varieties and schemes: An algebraic variety is glued together 

from affine algebraic varieties, which are zero sets of polynomials over 

algebraically closed fields. Schemes are likewise glued together from 

affine schemes, which are a generalization of algebraic varieties. Both 

are related to manifolds, but are constructed using sheaves instead of 

atlases. Because of singular points one cannot assume a variety is a 

manifold (even though linguistically the French variété, 
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German Mannigfaltigkeit and English manifold are much the same 

thing). 

CW-complexes: A CW complex is a topological space formed by gluing 

objects of different dimensionality together; for this reason they 

generally are not manifolds. However, they are of central interest 

in algebraic topology, especially in homotopy theory, where such 

dimenisonal defects are acceptable. 

8.6 SUMMARY 
 

We study in this unit about Seperation Properties and Seperatipon 

Axioms. We study Manifolds and Its properties. We study 

Generalizations of Manifolds. We Study Countability and Its properties.  

8.7 KEYWORD 
 

ORBIFOLD: An orbifold is something with many folds; unfortunately 

COUNTABILITY : He fact of being countable | Meaning, pronunciation, 

translations and examples. 

GENUS : A class of things that have common characteristics and that 

can be divided into subordinate kinds 

8.8 QUESTIONS FOR REVIEW  
 

1. Every regular topological space (X, J ) is a Hausdorff space. 

2. Let X and Y be topological spaces and further suppose X is a first 

countable topological space. Then a function f : X → Y is 

continuous at a point x ∈ X if and only if for every sequence {xn} 

∞ n=1 in X, xn → x as n → ∞, then the sequence {f(xn)} ∞ n=1 

converges to f(x) in Y 

3. Let (X, J ) be a first countable topological space and A be a 

nonempty subset of X. Then for each x ∈ X, x ∈ A if and only if 

there exists a sequence {xn} ∞ n=1 in A such that xn → x as n → 

∞. 
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4. If (X, J ) is a first countable topological space then for each x ∈ X 

there exists a countable local base say {Vn(x)} ∞ n=1 such that 

Vn+1(x) ⊆ Vn(x). 

8.9 SUGGESTION READING AND 

REFERENCES 

 Schechter, Eric (1997). Handbook of Analysis and its Foundations. 

San Diego: Academic Press. ISBN 0126227608. (has Ri axioms, 

among others) 

 Willard, Stephen (1970). General topology. Reading, Mass.: 

Addison-Wesley Pub. Co. ISBN 0-486-43479-6. (has all of the non-

Ri axioms mentioned in the Main Definitions, with these definitions) 

 Merrifield, Richard E.; Simmons, Howard E. (1989). Topological 

Methods in Chemistry. New York: Wiley. ISBN 0-471-83817-

9. (gives a readable introduction to the separation axioms with an 

emphasis on finite spaces) 

8.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 3 

              Q 2 Check in Section 1 

Check in Progress-II 

Answer  Q. 1 Check in Section 4.1 

              Q 2 Check in Section 5.1 
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https://archive.org/details/topologicalmetho00merr
https://archive.org/details/topologicalmetho00merr
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-471-83817-9
https://en.wikipedia.org/wiki/Special:BookSources/0-471-83817-9
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UNIT 9 :COUNTABILITY AND 

SEPARATION AXIOMS-II 
 

SRTUCTURE 

9.0 Objectives 

9.1 Introduction 

9.1.1 Regular and Normal Topological Space 

9.2 Example of a topological space which is regular but not normal 

9.3 Urysohn Lemma 

9.4 Tietze Extension Theorem 

9.5 Urysohn Metrization Theorem 

9.6 Summary 

9.7 Keyword 

9.8 Questions for review 

9.9 Suggestion Reading And References 

9.10 Answer to check your progress 

9.0 OBJECTIVES 
 

Here In this topic we study There are two basic themes to the next 

several sections: 

 a. What properties of a topology allow us to conclude that the topology 

is given by a metric? 

 b. What properties of a space allow us to conclude that the space 

actually is (homeomorphic to) a subspace of R n (or at least a subspace 

of Rω )? 

Learn Urysohn Metrization Theorem 
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9.1 INTRODUCTION 

 

The topics of this chapter are less motivated by analysis and more 

motivated by the study of topology itself. Munkres declares ―our basic 

goal‖ in this chapter is the proof of the Urysohn Metrization Theorem 

which deals with the condition under which a topological space can be 

embedded in a metric space. Another embedding theorem states that a 

compact m-manifold can be embedded in R N for some B ∈ N. An m-

manifold is like an m-dimensional surface (manifolds are studied in 

detail in the area of differential geometry). 

In topology and related fields of mathematics, there are several 

restrictions that one often makes on the kinds of topological spaces that 

one wishes to consider. Some of these restrictions are given by 

the separation axioms. These are sometimes called Tychonoff 

separation axioms, after Andrey Tychonoff. 

The separation axioms are axioms only in the sense that, when defining 

the notion of topological space, one could add these conditions as extra 

axioms to get a more restricted notion of what a topological space is. The 

modern approach is to fix once and for all the axiomatization of 

topological space and then speak of kinds of topological spaces. 

However, the term "separation axiom" has stuck. The separation axioms 

are denoted with the letter "T" after the German Trennungsaxiom, which 

means "separation axiom." 

The precise meanings of the terms associated with the separation axioms 

has varied over time, as explained in History of the separation axioms. It 

is important to understand the authors' definition of each condition 

mentioned to know exactly what they mean, especially when reading 

older literature. 

 

9.1.1 Regular and Normal Topological Spaces 
 

Definition.1.1 A topological space (X, J ) is called a T1 space if for each 

x ∈ X, the singleton set {x} is a closed set in (X, J ). 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Andrey_Tychonoff
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Axiomatization
https://en.wikipedia.org/wiki/German_language
https://en.wikipedia.org/wiki/History_of_the_separation_axioms
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Definition. 1.2 A T1-topological space (X, J ) is called a regular space if 

for each x ∈ X and for each closed subset A of X with x /∈ A, there exist 

open sets U, V in X satisfying the following:  

(i) x ∈ U, A ⊆ V ,             (ii) U ∩ V = θ. 

Result 1.3. Every regular topological space (X, J ) is a Hausdorff 

space. 

Proof. Let x, y ∈ X, x 6= y. By definition every regular space is a T1-

space. Hence {y} is a closed set. Also x 6= y implies x  A = {y}. Now 

{y} is a closed set which does not contain x. Since (X, J ) is a regular 

space, there exist open sets U, V in X satisfying the following: 

(i) x ∈ U, A = {y} ⊆ V , 

(ii) U ∩V = θ that is U, V are open sets in X such that x ∈ U, y ∈ 

V and U ∩V = θ. Hence (X, J ) is a Hausdorff topological 

space. 

Exercise 1.4. Prove that every Hausdorff space is a T1-space.  

Example 1.5. Let X be an infinite set and Jf be the cofinite topology on 

X. Then (X, Jf ) is a T1-space, but (X, Jf ) is not a Hausdorff space. For 

each x ∈ X, U = XK{x} is an open set. Hence U c = XKU = {x} is a 

closed set in X. That is for each x ∈ X, the singleton set {x} is a closed 

set. Therefore (X, J ) is a T1 - space. Take any x, y ∈ X, x 6= y. Suppose 

there exist open sets U, V in X such that x ∈ U, y ∈ V and U ∩ V = θ. 

Now U, V are nonempty open subsets of the cofinite topological space 

(X, Jf ) implies U c , V c are finite sets. Hence X = θ c = (U ∩ V ) c = U 

c ∪ V c is a finite set. Therefore there cannot exist any open sets U, V in 

(X, Jf ) satisfying x ∈ U, y ∈ V and U ∩V = θ. This means (X, Jf ) is not 

a Hausdorff space. 

Now let us give an example of a topological space which is Hausdorff 

but not regular. Take X = R and BK = {(a, b), (a, b)KK : a, b ∈ R, a < b}, 

where K = {1, 1 2 , 1 3 , . . .}. Now it is easy to prove that (left as an 

exercise) BK is a basis for a topology on R. Let JK be the topology on R 

generated by BK. If J is the usual topology on R then we know that J is 
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generated by B = {(a, b) : a, b ∈ R, a < b}. Since we have B ⊆ BK and 

this implies that J = JB ⊆ JBK = JK. 

           From this, it is clear that (R, JK) is a Hausdorff space. For x, y ∈ 

R, x 6= y, (R,J ) is a Hausdorff space implies there exist open sets U and 

V in (R, J ) such that x ∈ U, y ∈ V and U ∩ V = θ. But J ⊆ JK. Hence U, 

V ∈ JK are such that x ∈ U, y ∈ V and U ∩ V = θ and this shows that (X, 

JK) is a Hausdorff topological space. 

       Is K = {1, 1 2 , 1 3 , . . .} a closed set? Here K is a subset of R and J , 

JK are two different topologies on R, 0 ∈ K and 0  K with respect to 

(R,J ). Hence K is not a closed set in (R, J ). But RKK =
n 1





U  . An, where 

An = (−n, n)KK for each n ∈ N. Each An is an open set in (R, JK) 

implies RKK is an open set in (R, JK). This  implies K is a closed set in 

(R, JK). Also 0  K. What are the open sets containing K? If V is an 

open set containing K, then for each n ∈ N, 1 n ∈ V, there exists a basic 

open set say (an, bn) such that 1 n ∈ (an, bn) ⊆ V ( 1 n ∈/ (an, bn)KK) 

and 0 < an < bn implies K ⊆ 
k 1





U  (ak, bk) ⊆ V. 

          Suppose U, V are open sets such that 0 ∈ U and K ⊆ V . Since 0 ∈ 

U, there exists a basic open set B such that 0 ∈ B ⊆ U. If B is of the form 

(a, b) then (a, b) ∩ K 6= θ. So U ∩V 6= θ. If B is of the form (a, b)KK, 

choose n0 ∈ N such that 1 n0 < b. Since 1 n0 ∈ V, there exists an open 

interval (c, d) such that 1 n0 ∈ (c, d) ⊆ V. Now since (a, b) ∩ (c, d) is not 

empty (it contains 1 n0 ), it is an interval and hence uncountable. As K is 

countable, ((a, b) ∩ (c, d))KK 6= θ, i.e, ((a, b)KK) ∩ (c, d) 6= θ. 

Therefore U ∩ V 6= θ. 

          So we have proved that there cannot exist open sets U, V in (R, 

JK) with 0 ∈ U, K ⊆ V and U ∩ V = θ. This shows that (R, JK) is not a 

regular space. 

Definition 1.6. A topological space (X,J ) is said to be a normal space if 

and only if it satisfies: 

(i) (X,J ) is a T1-space, 
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(ii) A, B closed sets in X, A ∩ B = θ implies there exist open sets 

U, V in X such that A ⊆ U, B ⊆ V and U ∩ V = θ. 

Remark 1.7. It is to be noted that every normal space is a regular 

space. 

Theorem 1.8. Every metric space (X, d) is a normal space, That is if 

Jd is the topology induced by the metric then the topological space 

(X, Jd) is a normal space. 

 

Proof.  

Let A, B be disjoint closed subsets of X. Then for each a ∈ A, a  B = B 

implies d(a, B) = inf{d(a, b) : b ∈ B} > 0. If ra = d(a, B) > 0 then B(a, ra) 

∩ B = θ (if there exists b0 ∈ B such that d(b0, a) < ra, then ra = d(a, B) ≤ 

d(a, b0) < ra a contradiction). Similarly for each b ∈ B there exists rb > 0 

such that B(b, rb)∩A = θ. Let U = 
a A

U B(a, ra 3 ), V = 
b B

U B(a, rb 3 ). 

Now it is easy to prove that U ∩ V = θ. Hence if A, B are disjoint closed 

subsets of X then there exist open sets U, V in X such that A ⊆ U, B ⊆ V 

and U ∩V = θ. This implies (X, Jd) is a normal space. 

                                                                                                                       

Theorem1.9. A T1-topological space (X,J ) is regular if and only if 

whenever x is a point of X and U is an open set containing x then 

there exists an open set V containing x such that V ⊆ U 

Proof. Assume that (X,J ) is a regular topological space, x ∈ X and U 

is an open set containing x. Now x ∈ U implies x /∈ A = U c = XKU, 

the complement of the open set U. Now A is a closed set and x /∈ A. 

Hence X is a regular space implies there exist open sets V and W of 

X such that x ∈ V , A = U c ⊆ W and V ∩ W = θ. Now V ∩ W = θ 

implies V ⊆ Wc ⊆ U (we have U c ⊆ W), V ⊆ Wc implies V ⊆ Wc 

= Wc (W is an open set implies Wc is a closed set) implies V ⊆ U. 

Hence for x ∈ X and for each open set U containing x, there exists an 

open set V containing x such that V ⊆ U. 
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            Now let us assume that the above statement is satisfied. Our 

aim here is to prove that (X,J ) is a regular space. So take a closed set 

A of X and a point x ∈ XKA. Now A is a closed subset of X implies 

U = XKA is an open set containing x. Hence by our assumption there 

exists an open set V containing x such that V ⊆ U = Ac . Now V ⊆ 

Ac implies A ⊆ (V ) c = XKV . So V and (V ) c = W are open sets 

satisfying x ∈ V, A ⊆ W and V ∩ W = V ∩ (V ) c ⊆ V ∩ V c = θ. (V 

⊆ V implies (V ) c ⊆ V c .) Hence by definition (X,J ) is a regular 

space. 

In a similar way we prove the following theorem. 

Theorem 1.10. A T1-topological space is a normal space if and 

only if whenever A is a closed subset of X and U is an open set 

containing A, then there exists an open set V containing A such 

that V ⊆ U. 

Proof. Assume that (X,J ) is a normal topological space. Now take a 

closed set A and an open set U in X such that A ⊆ U. Now A ⊆ U 

implies U c ⊆ Ac . Here A, Uc = B are closed sets such that A ∩ B = 

A ∩ U c ⊆ U ∩ U c = θ. That is A, B are disjoint closed subsets of 

the normal space (X,J ). Hence there exist open sets U, W in X such 

that A ⊆ V, B = U c ⊆ W and V ∩W = θ. Further V ⊆ Wc (note: V 

⊆ Wc implies V ⊆ Wc = Wc ). Now V ⊆ Wc ⊆ U. Hence whenever 

A is a closed set and U is an open set containing A then there exists 

an open set V such that A ⊆ V, V ⊆ U. Now let us assume that the 

above statement is satisfied. So our aim is to prove that (X,J ) is a 

normal space. So start with disjoint closed subsets say A, B of X. 

Now A ∩ B = θ implies A ⊆ Bc = U. That is U is an open set 

containing the closed set A. Hence by our assumption there exists an 

open set V such that A ⊆ V, V ⊆ U. Now V ⊆ U implies U c ⊆ (V ) 

c implies B ⊆ (V ) c . Further V ∩ (V ) c ⊆ V ∩ V c = θ. That is 

whenever A, B are closed subsets of X, then there exist open sets V 

and (V ) c = W such that A ⊆ V, B ⊆ W and V ∩ W = θ. Therefore 

by definition (X,J ) is a normal space. 
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9.2 EXAMPLE OF A TOPOLOGICAL 

SPACE WHICH IS REGULAR BUT NOT 

NORMAL 
 

Let Jl be a lower limit topology on R. That is Rl = (R,Jl). Now let us 

prove that the product space Rl × Rl is a regular space. (If X, Y are 

regular topological spaces then the product space X × Y is a regular 

space. Hence it is enough to prove that Rl is a regular space.) For (x, y) ∈ 

R 2 , each basic open set U of the form U = [x, a) × [y, b) is both open 

and closed. Hence for each basic neighbourhood U of (x, y) in Rl × Rl 

there exists a neighbourhood V = U of (x, y) such that V = U ⊆ U. Now 

if U 0 is any open set containing (x, y) then there exists a basic open set 

U as given above such that (x, y) ∈ U = [x, a) × [y, b) ⊆ U 0 . Therefore 

V = U is an open set containing (x, y) and V = U = U ⊆ U 0 . Also Rl × 

Rl is a Hausdorff space. Hence Rl × Rl is a regular space. Now let us 

take Y = {(x, y) ∈ R 2 : y = −x} then for each (x, y) ∈ Y there exists a, b 

∈ R, x < a, y < b such that ([x, a) × [y, b))∩Y = {(x, y)}. Hence each 

singleton {(x, y)} is open in the subspace Y of Rl × Rl . This proves that 

the subspace Y of Rl × Rl is discrete. Also Y is a closed subset of Rl × Rl 

. Let A = {(x, y) ∈ R 2 : y = −x ∈ Q}, B = {(x, y) ∈ R 2 : y = −x ∈ Qc}. 

Now A, B are closed sets in Y and Y is a closed set in Rl×Rl implies A, 

B are closed in Rl×Rl . Also A ∩ B = θ. Suppose there exist open sets U, 

V in Rl × Rl satisfying A ⊆ U, B ⊆ V. Then we can observe that U ∩ V 

6= θ. Therefore the product space Rl × Rl is not a normal space. 

Remark 2.1. We can prove that (R,Jl) = Rl is a normal space. So, Rl × 

Rl is a regular space but it is not a normal space. 

                      We have already proved that every compact subset of 

Hausdorff topological space is closed. Essentially we use the same 

proof technique used there to prove the following theorem: 

Theorem 2.2. Every compact Hausdorff topological space (X,J ) 

is a regular space. 

Proof. Let A be a closed subset of X and x ∈ XKA, then for each y ∈ 

A, x 6= y. Hence X is a Hausdorff space implies that there exist open 
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sets Uy, Vy in X satisfying x ∈ Uy, y ∈ Vy and Uy ∩ Vy = θ. We 

know that closed subset of a compact space is compact. Here A ⊆ ∪ 

y∈A Vy. That is {Vy : y ∈ A} is an open cover for the compact space 

A. Therefore there exists n ∈ N and y1, y2, . . . , yn ∈ A such that A 

⊆  
n

i 1

U Vyi . Let U = 
n

i 1

I Uyi and V = 
n

i 1

U Vyi . Then U, V are open sets 

in X satisfying x ∈ U, A ⊆ V and U ∩ V ⊆ U ∩ (Vy1 ∪ Vy2 ∪ · · · 

∪ Vyn ) = (U ∩ Vy1 ) ∪ (U ∩ Vy2 ) ∪ · · · ∪ (U ∩ Vyn ) ⊆ (Uy1 ∩ 

Vy1 ) ∪ (Uy2 ∩ Vy2 ) ∪ · · · ∪ (Uyn ∩ Vyn ) = θ. Hence by 

definition (X,J ) is a regular space. 

Now let us prove that every compact Hausdorff space is a normal 

space. 

Theorem 2.3. Every compact Hausdorff space (X,J ) is a normal 

space. 

Proof. Let A, B be disjoint closed sets in X. Then for each x ∈ A, x 

/∈ B. Now (X,J ) is a regular space implies there exist open sets Ux, 

Vx satisfying: x ∈ Ux; B ⊆ Vx and Ux ∩ Vx = θ. Now {Ux : x ∈ A} 

is an open cover for A implies there exists n ∈ N, x1, x2, . . . , xn ∈ A 

such that A ⊆ 
n

i 1

U Uxi . Let U = Ux1 ∪ Ux2 ∪ · · · ∪ Uxn and V = 

Vx1 ∩Vx2 ∩ · · · ∩ Vxn . Then U, V are open sets in X satisfying A 

⊆ U, B ⊆ V and U ∩ V = θ. Hence by definition (X,J ) is a normal 

space. 

Theorem 2.4. Closed subspace of a normal topological space (X,J 

) is normal. 

Proof. Let Y be a closed subspace of (X,J ). That is Y is a closed 

subset of (X,J ) and JY = {A ∩Y : A ∈ J } is a topology on Y . So we 

will have to prove that (Y,JY ) is a normal space. To prove this, take 

a closed set A ⊆ Y and an open set U in (Y,JY ) such that A ⊆ U. 

Now U is an open set in (Y,JY ) implies there exists V ∈ J such that 

U = V ∩Y . Also A is a closed set in the subspace implies A = AY = 

A∩Y (here AY denotes the closure of A in (Y,JY ) and A denotes the 

closure of A in (X,J )). Now A, Y are closed sets in X implies A ∩ Y 
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is also a closed set in X. Hence A is a closed set in (X,J ) and V is an 

open set in (X,J ) containing A and (X,J ) is a normal topological 

space implies there exists an open set W in (X,J ) such that A ⊆ W 

and W ⊆ V. Now W ∩ Y is an open set in (Y,JY ) and A ⊆ W ∩ Y 

and W ∩ Y ⊆ W ∩ Y ⊆ V ∩ Y ⊆ U. We started with a closed set A 

in (Y,JY ) and an open set U in (Y,JY ) such that A ⊆ U. Now we 

have proved that there exists an open set W ∩ Y in (Y,JY ) satisfying 

A ⊆ W ∩ Y and (W ∩ Y )Y = W ∩ Y ∩ Y = W ∩ Y ⊆ U. That is W 

∩ Y is an open set in the subspace containing A and closure of this 

open set with respect to the subspace (Y,JY ) is contained in U. 

Hence (Y,JY ) is a normal space. 

 

Check In Progress-I 

Q. 1 Every compact Hausdorff space (X,J ) is a normal space. 

Solution 

………………………………………………………………………. 

……………………………………………………………………………

…………..………………………………………………………………

……………………….……………………………………………………

…………………………………. 

Q. 2 y metric space (X, d) is a normal space, That is if Jd is the topology 

induced by the metric then the topological space (X, Jd) is a normal 

space. 

Solution 

………………………………………………………………………. 

……………………………………………………………………………

…..………………………………………………………………………

……………………………………………………………………………

………… 

9.3 URYSOHN LEMMA 
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One of the most important features of normal spaces is that normality is 

the suitable condition to prove the very useful Urysohn‘s Lemma. 

Now let us prove the following important theorem known as Urysohn 

lemma. 

Theorem 3.1. Let (X, J ) be a normal space and A, B be disjoint 

nonempty closed subsets of X. Then there exists a continuous 

function f : X → [0, 1] such that f(x) = 0 for every x in A, and f(x) 

= 1 for every x in B. 

Proof. A ∩ B = θ implies A ⊆ Bc = XKB. Hence Bc is an open set 

containing the closed set A. Now X is a normal space implies there 

exists an open set U0 such that A ⊆ U0 and U0 ⊆ Bc = U1. Now [0, 

1] ∩ Q is a countable set implies there exists a bijective function say 

f : N → [0, 1] ∩ Q satisfying f(1) = 1, f(2) = 0 and f(NK{1, 2}) = (0, 

1) ∩ Q. That is [0, 1] ∩ Q = {r1, r2, r3, . . .} such that r1 = 1, r2 = 0 

and f(k) = rk for k ≥ 3. 

Aim: To define a collection {Up}p∈[0,1]∩Q of open sets such that 

for p, q ∈ [0, 1]∩ Q, p < q implies Up ⊆ Uq. 

Let Pn = {r1, r2, . . . , rn}. Assume that Up is defined for all p ∈ Pn, 

where n ≥ 2 and this collection satisfies the property namely p, q ∈ 

[0, 1] ∩ Q, p < q implies Up ⊆ Uq. 

Note that this result is true when n = 2. Now let us prove this result 

for Pn+1. Here Pn+1 = Pn ∪ {rn+1}. 

Let p, q ∈ Pn+1 be such that p = max{r ∈ Pn+1 : r < rn+1} and q = 

min{r ∈ Pn+1 : r > rn+1}. Now p, q 6= rn+1 implies p, q ∈ Pn. By 

our assumption Up, Uq are known and Up ⊆ Uq. Now Uq is an open 

set containing the closed set Up and X is a normal space. Hence there 

exists an open set say Urn+1 such that Up ⊆ Urn+1 and Urn+1 ⊆ Uq. 

If r, s ∈ Pn then we are through. Suppose r ∈ Pn and s = rn+1 then r ≤ 

p or r ≥ q. If r ≤ p, Ur ⊆ Up ⊆ Up ⊆ Us. If r ≥ q, Us ⊆ Uq ⊆ Uq ⊆ 

Ur and therefore by induction Up is defined for all p ∈ [0, 1] ∩ Q and 

p, q ∈ [0, 1] ∩ Q, p < q implies Up ⊆ Uq. Now define Up = θ, if p ∈ 

Q, p < 0 and Up = X if p ∈ Q, p > 1. Then p, q ∈ Q, p < q implies Up 
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⊆ Uq. Define f : X → [0, 1] as f(x) = inf{p ∈ Q : x ∈ Up}. Now x ∈ 

A, then x ∈ U0. Hence x ∈ Up for all p ≥ 0. In this case {p ∈ Q : x ∈ 

Up} = [0,∞) ∩ Q. Hence inf{p ∈ Q : x ∈ Up} = 0. That is x ∈ A 

implies f(x) = 0. Now suppose x ∈ B = U c 1 then x /∈ Up for all p ≤ 

1. Hence {p ∈ Q : x ∈ Up} = [1,∞) ∩ Q implies f(x) = 1 for all x ∈ B. 

                   Now let us prove that f is a continuous function. S = {[0, 

a),(a, 1] : 0 < a < 1} is a subbase for [0, 1]. Hence it is enough to 

prove that for each a, 0 < a < 1, f −1 ([0, a)) and f −1 ((a, 1])) are 

open sets in X. For 0 < a < 1, let us prove that f −1 ([0, a)) = {x ∈ X : 

0 ≤ f(x) < a} = ∪ p< a implies there exists a rational number p such 

that f(x) < p < a. By the definition of f(x), x ∈ Up. 

Hence f −1 ([0, a)) ⊆ ∪ p 

Now let x ∈ Up for p < a implies f(x) ≤ p implies x ∈ f −1 ([0, a)). 

Hence we have 

∪ p< a < 1. Now f : X → [0, 1] such that inverse image of each 

subbasic open set is an open set implies that f : X → [0, 1] is a 

continuous function. 

Theorem 3.2. Let (X, J ) be a normal space and A, B be disjoint 

nonempty closed subsets of X. Then for a, b ∈ R, a < b there 

exists a continuous function f : X → [a, b] such that f(x) = a for 

every x in A, and f(x) = b for every x in B. 

Proof. Define g : [0, 1] → [a, b] as g(t) = a + (b − a)t then g is 

continuous. Now by theorem 3.1 there is a continuous function f1 : X 

→ [0, 1] such that f1(x) = 0, for all x ∈ A and f1(x) = 1 for all x ∈ B. 

The function f = g ◦ f1 : X → [a, b] is a continuous function and 

further f(x) = g(f1(x)) = g(0) = a for all x ∈ A and f(x) = g(f1(x)) = 

g(1) = b for all x ∈ B. 

Remark 3.3. Let A, B be nonempty disjoint closed subsets of a metric 

space (X, d). Define f : X → R as f(x) = d(x, A) d(x, A) + d(x, B) . 

Observe that f is a continuous function satisfying the condition that 

f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B. It shows that the 
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proof of Urysohn lemma is trivial (or say simple) if our topological 

space is a metrizable topological space. 

 

9.4 TIETZE EXTENSION THEOREM 
 

Our final application of Urysohn‘s lemma is an extension theorem. 

Extending continuous functions is a useful tool in many applications of 

topology. A consequence of Urysohn‘s lemma is the following important 

theorem, that says that in normal spaces, real functions on a closed subset 

can be always extended to the whole space. 

Theorem 4.1. Tietze Extension Theorem. Let A be a nonempty closed 

subset of a normal space X and let f: A → [−1, 1] be a continuous 

function. Then there exists a continuous function g : X → [−1, 1] 

such that g(x) = f(x) for all x in A. 

Proof. The sets −1, −1 3 , 1 3 , 1 are closed subsets of [−1, 1] and f : A → 

[−1, 1] is a continuous function implies A1 = f 
−1

 {1 3 , 1 } B1 = f 
−1

 {−1, 

−1 3}  are closed subsets of the subspace A. (Here consider A as a 

subspace of X.) Now x ∈ A1 ∩ B1 implies f(x) ∈ {−1, −1 3} ∩ {1 3 , 1} 

a contradiction. Hence A1 ∩ B1 = θ. Now A1, B1 are closed in A and A 

is closed in X implies A1, B1 are closed in the normal space X. Hence by 

Urysohn‘s lemma there exists a continuous function f1 : X → {−1 3 , 1 

3} such that f1(A1) = 1 3 and f1(B1) = − 1 3 then |f(x) − f1(x)| ≤ 2 3 for 

all x ∈A 

Now consider the function f − f1 : A →{ −2 3 , 2 3} then A2 = (f − f1) 

{−1 2 9 , 2 3}  and B2 = (f − f)
−1{

 −2 3 , −2 9}  are disjoint closed subsets 

of X. By Urysohn lemma there exists a continuous function f2 : X → − 2 

9 , 2 9 such that f2(A2) = 2 9 and f2(B2) = − 2 9 . Also |f(x) − (f1(x) + 

f2(x))| ≤ 4 9 for all x ∈ A. By proceeding as above, by induction, for each 

n ∈ N there exists a continuous function fn : X →{ h −2 n−1 3n , 2 n−1 

3n i} such that    

f(x) − Xn i=1 fi(x) 
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    ≤  2 3 n for all x ∈ A. (5.4) That is fn : X → [−1, 1] is a sequence of 

continuous functions such that |fn(x)| ≤ 2 n−1 3n = Mn and P∞ n=1 Mn < 

∞. By Weierstrass M-test, the series P∞ n=1 fn(x) converges uniformly 

on X. That is, if sn(x) = Pn i=1 fi(x), x ∈ X then sn(x) converges 

uniformly on X. Also each sn : X → R is continuous. 

We know, from analysis, if a sequence sn : X → R of continuous 

functions converges uniformly to a function g : X → R then g is also 

a continuous function. Hence g : X → R be defined as g(x) = P∞ n=1 

fn(x) is continuous. Now for each x ∈ A     

f(x) − Xn i=1 fi(x)      ≤  2 3 n 

Therefore |g(x) − f(x)| =      limn→∞ Xn i=1 fi(x) − f(x)      = 

limn→∞      Xn i=1 fi(x) − f(x)      ≤ limn→∞  2 3 n = 0. This implies 

g(x) = f(x) for all x ∈ A. 

Definition 4.2. A topological space (X, J ) is said to be completely 

regular if 

(i) for each x ∈ X, singleton {x} is closed in (X, J ) (that is (X, J 

) is a T1-space), 

(ii)  for x ∈ X and any nonempty closed set A with x /∈ A there 

exists a continuous function f : X → [0, 1] such that f(x) = 0 

and f(y) = 1 for all y ∈ A 

Result 4.3. Every normal space (X, J ) is completely regular. 

Proof. Let x ∈ X and A be a nonempty closed set with x /∈ A. Now 

{x}, A are disjoint closed sets. Hence by Urysohn‘s lemma there 

exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(y) 

= 1 for all y ∈ A. 

Result 5.5.4. If Y is a subspace of a completely regular space (X, J 

) then (Y , JY ) is also a completely regular space. 

Proof. Let y ∈ Y and A be a closed set in (Y , JY ) with y /∈ A. Since 

A is a closed set in Y there exists a closed set F in (X, J ) such that A 

= F ∩Y, y /∈ F, F is a closed set in the completely regular space (X, J 

) implies there exists a continuous function f : X → [0, 1] such that 
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f(y) = 0 and f(a) = 1 for all a ∈ F. Now f : X → [0, 1] is a continuous 

function implies f|Y = g : (Y , JY ) → [0, 1] (here g(x) = (f|Y )(x) = 

f(x) for all x ∈ Y ) is a continuous function. Now g: (Y , JY ) → [0, 

1] is a continuous function such that g(y) = f(y) = 0 and g(a) = f(a) = 

1 for all a ∈ A = F ∩ Y . Also subspace of a T1-space (do it as an 

exercise) is T1-space. Hence the subspace (Y , JY ) is a completely 

regular space. 

Now we are in a position to prove Urysohn metrization theorem that 

gives sufficient conditions under which a topological space is 

metrizable. 

Check In Progress-II 

Q. 1 Every normal space (X, J ) is completely regular. 

Solution 

………………………………………………………………………. 

……………………………………………………………………………

…………..………………………………………………………………

……………………….……………………………………………………

…………………………………. 

Q. 2 State Tietze Extension Theorem. 

Solution 

………………………………………………………………………. 

……………………………………………………………………………

…..………………………………………………………………………

……………………………………………………………………………

………… 

9.5 URYSOHN METRIZATION THEOREM 
 

We will now see Urysohn‘s metrization theorem. Recall that a countable 

product of metric spaces is always metrizable: if X = Πn∈NXn and dn(a) 

= min{dn(a), 1} is the standard bounded metric associated to the metric 
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dn on Xn, then we can define a metric (inducing the topology) on X for 

instance by 

Theorem : Urysohn Metrization Theorem. Every normal space (X, J 

) with a countable basis is metrizable. 

Proof. Let B = {B1, B2, . . . , } be a countable basis for (X, J ). 

Suppose n, m ∈ N are such that Bn ⊆ Bm then Bn ∩ Bc m = θ. 

Hence by Urysohn‘s lemma there exists a continuous function say 

gn,m : X → R such that 

gn,m(x) = 0 for all x ∈ B c m,                          1 

and 

gn,m(x) = 1 for all x ∈ Bn.                             2 

Now take x0 ∈ X and an open set U containing x0. Since B is a basis 

for (X, J ) there exists Bm ∈ B such that x0 ∈ Bm ⊆ U. Now Bm is 

an open set containing x0 implies there exists an open set V 

containing x0 such that V ⊆ Bm. Hence there exists a basic open set 

Bn containing x0 such that Bn ⊆ V ⊆ Bm. Hence for such pair (n, m) 

we have a continuous function gn,m : X → R satisfying eq. 1 

                        So if x0 ∈ X and U is an open set containing x0 then 

there exists a continuous function gn,m : X → R such that gn,m(x0) 

= 1 and gn,m(x) = 0 for all x ∈ U c ⊆ Bc m. So we have proved that 

there exists a countable collection of continuous functions fn : X → 

[0, 1] such that for x0 ∈ X and open set U containing x0, there exists 

n ∈ N such that fn(x0) = 1 > 0 and fn(x) = 0 for all x ∈ U c . It is to 

be noted that {(n, m) : n, m ∈ N} is a countable set. We know that 

(refer chapter 2, and exercise 9 of chapter 5) R w = R × R × R × · · · 

with product topology is metrizable. That is there is a metric d on R 

w such that Jd, the topology on R w induced by d, coincides with the 

product topology on R w. 

                   Now let us define a map T : X → R w as T(x) = (f1(x), 

f2(x), . . . ,) and using this map we define d1(x, y) = d(T(x), T(y)) and 

conclude that Jd1 = J . This will prove that (X, J ) is a metrizable 
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topological space. Now let us prove that (X,J ) is homeomorphic to a 

subspace of R w. Each fn : X → R is a continuous function implies 

T(x) = (f1(x), f2(x), . . .) is a continuous function. 

To prove T is injective (one-one). 

               Let x, y ∈ X be such that x 6= y. Then there exist open sets 

U, V ∈ X such that x ∈ U, y ∈ V and U ∩ V = θ. Now U is an open 

set containing x implies there exists n ∈ N such that fn(x) = 1 and 

fn(y) = 0 (note that y ∈ U c ). This implies fn(x) 6= fn(y) for this 

particular n ∈ N and hence (f1(x), f2(x), . . . , fn(x), . . .) 6= (f1(y), 

f2(y), . . . , fn(y), . . .). This means T x 6= T y. That is x, y ∈ X, x 6= 

y implies T x 6= T y. This implies T is 1-1. 

                Now it is enough to prove that T maps open set A in X to 

an open set T(A) in Y = T(X). Let A be an open set and y0 ∈ T(A). 

Now y0 ∈ T(A) implies there exists x0 ∈ A such that T(x0) = y0. 

Now x0 ∈ A, A is an open set implies there exists n0 ∈ N such that 

fn0 (x0) = 1 and fn0 (x) = 0 for all x ∈ Ac . We know that for each n 

∈ N the projection map pn : R w → R defined as pn ((xk) ∞ k=1) = 

xn is a continuous map. Hence (0, ∞) is an open set implies V = p −1 

n0 ((0,∞)) is an open subset of R w. This implies V ∩ Y is an open 

set in Y . 

           Now let us prove that y0 ∈ V ∩Y and V ∩Y ⊆ T(A). pn0 (y0) 

= (pn0 ·T)(x0) = fn0 (x0) = 1 > 0 implies y0 ∈ V . Also y0 ∈ Y . 

Hence y0 ∈ V ∩ Y . That is V ∩ Y is an open set in Y containing the 

point y0. 

Now we claim that V ∩Y ⊆ T(A). So, let y ∈ V ∩Y . Then there 

exists x ∈ X such that y = T x. This implies pn0 (y) ∈ (0,∞) and pn0 

(y) = pn0 (T(x)) = fn0 (x) ∈ (0,∞). Hence x ∈ A (fn0 (x) = 0 for x ∈ 

Ac ). So we have proved that y = T x ∈ V ∩Y implies y = T x ∈ 

T(A). Hence V ∩ Y is an open set in Y containing T x and this set is 

contained in T(A). Therefore T(A) is open in Y . Hence we have 

proved that T : (X,J ) onto −−→ (Y, dY ) is a homeomorphism. (Here 

(Y, dY ) is a subspace of (R w, d).) Now d1(x, y) = d(T x, T y) for all 

x, y ∈ X implies d1 is a metric on X. Also it is easy to see that a 
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subset A of X is open in (X,J ) if and only if A is open in (X,Jd1 ). 

Therefore Jd1 = J . 

Theorem 5.1. Let X be compact Hausdorff. Then X is normal.  

Proof. We have seen that in a Hausdorff space compact (disjoint) sets 

are separated by open sets. Since any closed subset of X is compact, 

as X is compact, normality follows.  

Corollary 5.2. Any locally compact Hausdorff space is regular. 

 Proof. It is a subspace of a normal, hence regular, space hence it is 

regular. (Alternatively, any locally compact Hausdorff has a basis of 

neighborhoods with compact closure: given x ∈ X and U a 

neighborhood of x, there exists open B, with x ∈ B and B ⊂ U, ie., X 

is regular.) A locally compact Hausdorff space needs not be normal: 

e.g., take ]0, 1[J⊂ [0, 1]J with J uncountable. Then ]0, 1[J is locally 

compact Hausdorff as it is open in [0, 1]J , which is compact 

Hausdorff (hence normal). But ]0, 1[JRJ not normal. 

 

Examples 5.3. 1. Rn is normal.  

2. Any discrete space is normal - metrizable.  

3. RN is normal - metrizable (any countable product of metrizable 

spaces is metrizable). 

 4. RJ with the uniform topology is normal (not with product!) 

Corollary 5.4. X regular and second countable ⇔ X metrizable and 

separable . Proof. Recall that if X is metrizable, then second 

countable ⇔ separable.  

Corollary 5.5. Let X be compact Hausdorff. Then X metrizable 

⇔ second countable.  

Example 5.6. Recall that a n-manifold M is a Hausdorff, second 

countable space where each point has a neighborhood diffeomorphic 

to an open subset of Rn . Then, since the closed ball in Rn is compact 

(Heine-Borel‘s theorem), we can show that M is locally compact, 
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hence regular. It follows that any n-manifold is metrizable. Another 

nice application of Urysohn‘s Lemma is a short proof that any 

compact n-manifold can be embedded in RN, for some N 

9.6 SUMMARY 
 

We learnt in this unit Urysohn Metrization theorem and its proof. We 

study Tietze Extension theorem and its proof. We study Urysohn Lemma 

and its proof. We study Regular and normal Topological Space.  

9.7 KEYWORD 
 

Metrization : A metrizable space is a topological space that is 

homeomorphic to a metric space 

Urysohn : A topological space is termed a Urysohn space if, for any two 

distinct points 

Hausdorff space. In topology and related branches of mathematics, 

a Hausdorff space, separated space or T2 space is a topological 

space where for any two distinct points there exists a neighbourhood of 

each which is disjoint from the neighbourhood of the other 

9.8 QUESTIONS FOR REVIEW 
 

1. Discrete spaces always first countable (are metrizable): {x} is a 

basis at x, but second countable if, and only if, countable 

2. Rn is first and second countable: ]p1, q1[×...×]pn, qn[, pi , qi ∈ Q, 

i = 1, ..., n is a countable basis for the standard topology 

3. An uncountable set with the co-finite / co-countable topology is 

not first countable: if B is a basis, x ∈ X, have {x} = ∩B∈BB (it is T1 

- see next section), if B is countable then X \ {x} is countable union 

of finite/countable sets, hence countable. 
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4. R2 with the topology given by slotted discs: a basic neighborhhod 

of x ∈ R2 is given by {x} ∪ B with B an open ball with straight lines 

through x removed: not first countable. 

5. RN the space of real sequences, with the product topology, is 

second countable: a basis is given by sets of the form ΠUn such that 

Uni =]pi , qi[, pi , qi ∈ Q, i = 1, ..., k, and Un = R, n , ni . 

6. RN ρ the space of real sequences, with the uniform topology, is not 

second countable: {0, 1} N is an uncountable discrete subset, as ρ(x, 

y) = 1 for any sequences x , y, hence Bρ(x, 1) = {x} is open. It is first 

countable, as it is a metric space.  

7. Let X be a T1 space.  

(i) X is regular ⇔ x ∈ X, U nbhd of x, there exists nbhd W of x such 

that W ⊂ U. 

 (ii) X is normal ⇔ A ⊂ X closed, U ⊃ A open, there exists open W 

⊃ A such that W ⊂ U.  

8. Let X have a countable basis (ie, second countable). Then X 

regular ⇔ X normal. 

9. Any locally compact Hausdorff space is regular. 
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9.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 2 

              Q 2 Check in Section 2 

Check in Progress-II 

Answer  Q. 1 Check in Section 4 

              Q 2 Check in Section 4 
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UNIT 10: SECOND COUNTABLE 

SPACE 
 

SRTUCTURE 

10.0 Objective  

10.1 Introduction 

10.2 Urysohn's lemma  

  10. 2.1 Formal Statement 

  10. 2.2 Sketch the proof 

10.3 Embedding Theorem 

10.4 Equivalent Condition for a Space to be Tychonoff 

10.5  Second Countable Space 

   10.5.1 Properties 

   10.5.2 Other Properties 

   10.5.3 Metrization Theorems 

10.6 Summary 

10.7 Keyword 

10.8 Questions for review  

10.9 Suggestion Reading And References 

10.10 Answer to check your progress 

10.0 OBJECTIVE 
 

 Learn Second Countable Space and its properties 

 Learn Urysohn‘s Lemma and Embedding Theorem 

 Learn state and prove Metrization Theorem 

Learn equivalent condition for a space to be Tychonoff 

 

10.1 INTRODUCTION 
 

https://www.emathzone.com/tutorials/general-topology/second-countable-space.html
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The Urysohn Metrization Theorem tells us under which conditions a 

topological space X is metrizable, i.e. when there exists a metric on the 

underlying set of X that induces the topology of X. The main idea is to 

impose such conditions on X that will make it possible to embed X into a 

metric space Y , by homeomorphically identifying X with a subspace of 

Y . 

Let us start with some definitions. A T1-space X (i.e. the space in which 

one-point sets are closed) is said to be regular if for any point x ∈ X and 

any closed set B ⊂ X not containing x, there exist two disjoint open sets 

containing x and B respectively. The space X is said to be normal if for 

any two disjoint closed sets B1 and B2 there exist two disjoint open sets 

containing B1 and B2 respectively. 

 

10.2 URYSOHN METRIZATION 

THEOREM 
 

Example. An Example of a Hausdorff space which is not normal is 

given by the set R, where the usual topology is enhanced by requiring 

that the set {1/n | n ∈ N} is closed. Examples of spaces which are regular 

but not normal exist, but are complicated. 

Lemma. Every regular space with a countable basis is normal.  

Proof. First, using regularity and countable basis, construct a countable 

covering {Ui} of B1 by open sets whose closures do not intersect B2. 

Similarly, construct an open countable covering {Vi} of B2 disjoint from 

B1. Then define 

U 0 n := Un \ [n i=1 V¯ i and V 0 n := Vn \ [n i=1 U¯ i .  

                   Show that these sets are open and the the collection {U 0 n} 

covers B1 and {V 0 n} covers B2. Finally show that U 0 := ∪U 0 n and 

V 0 := ∪V 0 n are disjoint. Next, we will prove one of the very deep 

basic results. 
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Urysohn lemma. Let X be a normal space, and let A and B be disjoint 

closed subsets of X. There exists a continuous map f : X → [0, 1] such 

that f(x) = 0 for every x ∈ A, and f(x) = 1 for every x ∈ B. 

Proof. Let Q be the set of rational numbers on the interval [0, 1]. For 

each rational number q on this interval we will define an open set Uq ⊂ 

X such that whenever p < q, we have U¯ p ⊂ Uq. Hint: enumerate all the 

rational numbers on the interval (so that the first two elements are 1 and 

0) and then define U1 = X \ B and all other Uq‘s can be defined 

inductively by using normality of X. 

        Now let us extend the definition of Uq to all rational numbers by 

defining Uq = ∅ if q is negative, and Uq = X if q > 1. 

        Next, for each x ∈ X define Q(x) to be the set of those rational 

numbers such that the corresponding set Uq contains x. Show that Q(x) 

is bounded below and define f(x) as its infimum. 

        Now we will show that f(x) is the desired function. First, show that 

if x ∈ U¯ r, then f(x) ≤ r, and if x /∈ Ur, then f(x) ≥ r. 

        Now prove the continuity of f(x) by showing that for any x0 ∈ X 

and an open interval (c, d) containing f(x0), there exist a neighbourhood 

U of x0 such that f(U) ⊂ (c, d). [Why would this imply continuity?] For 

this choose two rational numbers q1 and q2 such that c < q1 < f(x0) < q2 

< d and take U = Uq2 \ U¯ q1 . 

      Next, we will construct the metric space Y for the embedding. 

Actually, as a topological space, the space Y is simply the product of N 

copies of R with the product topology. Let ¯d(a, b) = min{|a − b|, 1} be 

the so-called standard bounded metric on R [show that this is indeed a 

metric]. Then if x and y are two points of Y , define 

D(x, y) = sup ¯d(xi , yi) i  . 

Show that this is indeed a metric. 

Proposition. The metric D induces the product topology on Y = R N .  
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Proof. First, let U be open in the metric topology and let x ∈ U. We will 

find an open set V in the product topology such that x ⊂ V ⊂ U. Choose 

an ε-ball centered at x, which lies in U. Then choose N large enough so 

1/N < ε. Show that the following set satisfies the requirement: 

V = (x1 − ε, x1 + ε) × · · · × (xN − ε, xN + ε) × R × R × · · · . 

         Conversely, consider a basis element V = Q i∈N Vi for the product 

topology, such that Vi is open in R and Vi = R for all but finitely many 

indices i1, ..., iK. Given x ∈ V , we will find an open ball U in metric 

topology, which contains x and is contained in V . Choose an interval (xi 

− εi , xi + εi) contained in Vi such that εi < 1 and define 

ε = min{εi/i | i = i1, ..., iK}. 

Now show that the ball of radius ε centered at x is contained in V . 

 Next we need the following technical result: 

Lemma. Let X be a regular space with a countable basis. There exists a 

countable collection of continuous functions fn : X → [0, 1] such that for 

any x0 ∈ X and any neighbourhood U of x0, there exists an index n such 

that fn(x0) > 0 and fn = 0 outside U. 

Proof. Given x0 and U, use regularity to choose two open sets Bn and 

Bm from the countable basis containing x0 and contained in U such that 

B¯ n ⊂ Bm. Then use the Urysohn lemma to construct a function gn,m 

such that gn,m(B¯ n) = 1 and gn,m(X\Bm) = 0. Now show that this 

collection of functions satisfies our requirement.  

Finally we will prove the main result: 

Urysohn Metrization Theorem. Every regular space X with a countable 

basis is metrizable. 

While every metrizable space is normal (and regular) such spaces do not 

need to be second countable. For example, any discrete space X is 

metrizable, but if X consists of uncountably many points it does not have 

a countable basis (Exercise 4.10). This means that the converse of the 

Urysohn Metrization Theorem does not hold. However, this theorem can 

be generalized to give conditions that are both sufficient and necessary 
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for metrizability of a space. We finish this chapter by giving the 

statement of such result without proof. 

Proof. Given the collection of functions {fn} from the previous lemma, 

and Y = R N with the product topology, we define a map F : X → Y as 

follows: 

F(x) = (f1(x), f2(x), ...). 

Show that this is a continuous map. Also show that it is injective. 

          In order to finish the proof, we need to show that for each open set 

U in X, the set F(U) is open in F(X). Let z0 be a point of F(U). Let x0 ∈ 

U be such that F(x0) = z0 and choose an index N such that fN (x0) > 0 

and fN (X \ U) = 0. 

        Now we let W = π −1 N ((0,∞)) ∩ f(X),  

         where πN is the projection Y → R onto the Nth multiple. Show that 

W is an open subset of F(X) such that z0 ∈ W ⊂ F(U). 

Give an example of a Hausdorff space with a countable basis which is 

not metrizable. 

Urysohn Metrization Theorem. Every second countable normal space 

is metrizable. The main idea of the proof is to show that any space as in 

the theorem can be identified with a subspace of some metric space. To 

make this more precise we need the following: 

Definition. A continuous function i: X → Y is an embedding if its 

restriction i: X → i(X) is a homeomorphism (where i(X) has the topology 

of a subspace of Y ). 

Example. The function i: (0, 1) → R given by i(x) = x is an embedding. 

The function j : (0, 1) → R given by j(x) = 2x is another embedding of 

the interval (0, 1) into R 

Lemma. If j : X → Y is an embedding and Y is a metrizable space then 

X is also metrizable. 

Proof. Let µ be a metric on Y . Define a metric ρ on X by ρ(x1, x2) = 

µ(j(x1), j(x2)). It is easy to check that the topology on X is induced by 
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the metric ρ (exercise). Let now X be a space as in Theorem 12.1. In 

order to show that X is metrizable it will be enough to construct an 

embedding j : X → Y where Y is metrizable. The space Y will be 

obtained as a product of topological spaces: 

Definition. Let {Xi}i∈I be a family of topological spaces. The product 

topology on Q i∈I Xi is the topology generated by the basis  

B = Q i∈I Ui | Ui is open in Xi and Ui 6= Xi for finitely many indices i 

only 

Proposition. Let {Xi}i∈I be a family of topological spaces and for j ∈ I 

let  

pj : Y i∈I Xi → Xj 

be the projection onto the j-th factor: pj((xi)i∈I) = xj . Then: 

1) for any j ∈ I the function pj is continuous.  

2) A function f : Y → Q i∈I Xi is continuous if and only if the 

composition pjf : Y → Xj is continuous for all j ∈ I 

Proof. Exercise Self 

Definition. Let X be a topological space and let {fi}i∈I be a family of 

continuous functions fi : X → [0, 1]. We say that the family {fi}i∈I 

separates points from closed sets if for any point x0 ∈ X and any closed 

set A ⊆ X such that x0 6∈ A there is a function fj ∈ {fi}i∈I such that 

fj(x0) > 0 and fj |A = 0. 

Embedding Lemma. Let X be a T1-space. If {fi : X → [0, 1]}i∈I is a 

family that separates points from closed sets then the map f∞ : X → Y 

i∈I [0, 1] given by  

f∞(x) = (fi(x)) i∈I 

is an embedding. 

Note. If the family {fi}i∈I is infinitely countable then f∞ is an 

embedding of X into the Hilbert cube [0, 1] 
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Definition. Let X be a topological space. A collection U = {Ui}i∈I of 

open sets in X is locally finite if each point x ∈ X has an open 

neighborhood Vx such that Vx ∩ Ui 6= ∅ for finitely many i ∈ I only. 

A collection U is countably locally finite if it can be decomposed into a 

countable union U = S∞ n=1 Un where each collection Un is locally 

finite. 

Nagata-Smirnov Metrization Theorem. Let X be a topological space. 

The following conditions are equivalent: 

1) X is metrizable.  

2) X is regular and it has a basis which is countably locally finite. 

Exercise. Show that the product topology on R n = R × · · · × R is the 

same as the topology induced by the Euclidean metric. 

Exercise. Let {Xi}i∈I be a family of topological spaces. The box 

topology on Q i∈I Xi is the topology generated by the basis 

     B = Q
i i

U  Ui | Ui is open in Xi  

Notice that for products of finitely many spaces the box topology is the 

same as the product topology, but that it differs if we take infinite 

products. 

Let X = Q∞ n=1[0, 1] be the product of countably many copies of the 

interval [0, 1]. Consider X as a topological space with the box topology. 

Show that the map f : [0, 1] → X given by f(t) = (t, t, t, . . . ) is not 

continuous. 

2 Urysohn's lemma  

In topology, Urysohn's lemma is a lemma that states that a topological 

space is normal if and only if any two disjoint closed subsets can 

be separated by a continuous function.
[1]

 

Urysohn's lemma is commonly used to construct continuous functions 

with various properties on normal spaces. It is widely applicable since 

all metric spaces and all compact Hausdorff spaces are normal. The 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Lemma_(mathematics)
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Normal_space
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Separated_by_a_function
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Urysohn%27s_lemma#cite_note-1
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Hausdorff_space
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lemma is generalized by (and usually used in the proof of) the Tietze 

extension theorem. 

The lemma is named after the mathematician Pavel Samuilovich 

Urysohn. 

 

10.2.1 Formal statement 

Two subsets A and B of a topological space X are said to be separated by 

neighbourhoods if there are neighbourhoods U of A and V of B that are 

disjoint. In particular A and B are necessarily disjoint. 

Two plain subsets A and B are said to be separated by a function if there 

exists a continuous function f from X into the unit interval [0,1] such 

that f(a) = 0 for all a in A and f(b) = 1 for all b in B. Any such function is 

called a Urysohn function for A and B. In particular A and B are 

necessarily disjoint. 

It follows that if two subsets A and B are separated by a function then so 

are their closures. 

Also it follows that if two subsets A and B are separated by a 

function then A and B are separated by neighbourhoods. 

A normal space is a topological space in which any two disjoint closed 

sets can be separated by neighbourhoods. Urysohn's lemma states that a 

topological space is normal if and only if any two disjoint closed sets can 

be separated by a continuous function. 

The sets A and B need not be precisely separated by f, i.e., we do not, and 

in general cannot, require that f(x) ≠ 0 and ≠ 1 for x outside of A and B. 

The spaces in which this property holds are the perfectly normal spaces. 

Urysohn's lemma has led to the formulation of other topological 

properties such as the 'Tychonoff property' and 'completely Hausdorff 

spaces'. For example, a corollary of the lemma is that 

normal T1 spaces are Tychonoff. 

 

https://en.wikipedia.org/wiki/Tietze_extension_theorem
https://en.wikipedia.org/wiki/Tietze_extension_theorem
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Pavel_Samuilovich_Urysohn
https://en.wikipedia.org/wiki/Pavel_Samuilovich_Urysohn
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Separated_by_neighbourhoods
https://en.wikipedia.org/wiki/Separated_by_neighbourhoods
https://en.wikipedia.org/wiki/Neighbourhood_(topology)
https://en.wikipedia.org/wiki/Separated_by_a_function
https://en.wikipedia.org/wiki/Continuous_function_(topology)
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Separated_by_a_function
https://en.wikipedia.org/wiki/Separated_by_a_function
https://en.wikipedia.org/wiki/Separated_by_a_function
https://en.wikipedia.org/wiki/Separated_by_neighbourhoods
https://en.wikipedia.org/wiki/Normal_space
https://en.wikipedia.org/wiki/Precisely_separated_by_a_function
https://en.wikipedia.org/wiki/Perfectly_normal_space
https://en.wikipedia.org/wiki/T1_space
https://en.wikipedia.org/wiki/Tychonoff_space
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10.2.2 Sketch of Proof 

The procedure is an entirely straightforward application of the definition 

of normality (once one draws some figures representing the first few 

steps in the induction described below to see what is going on), 

beginning with two disjoint closed sets. The clever part of the proof is 

the indexing the open sets thus constructed by dyadic fractions 

For every dyadic fraction r ∈ (0,1), we are going to construct an open 

subset U(r) of X such that: 

1. U(r) contains A and is disjoint from B for all r 

2. for r < s, the closure of U(r) is contained in U(s). 

Once we have these sets, we define f(x) = 1 if x ∉ U(r) for any r; 

otherwise f(x) = inf { r : x ∈ U(r) } for every x ∈ X. Using the fact that 

the dyadic rationals are dense, it is then not too hard to show that f is 

continuous and has the property f(A) ⊆ {0} and f(B) ⊆ {1}. 

In order to construct the sets U(r), we actually do a little bit more: we 

construct sets U(r) and V(r) such that 

 A ⊆ U(r) and B ⊆ V(r) for all r 

 U(r) and V(r) are open and disjoint for all r 

 for r < s, V(s) is contained in the complement of U(r) and the 

complement of V(r) is contained in U(s). 

Since the complement of V(r) is closed and contains U(r), the latter 

condition then implies condition (2) from above. 

This construction proceeds by mathematical induction. First define U(1) 

= X \ B and V(0) = X \ A. Since X is normal, we can find two disjoint 

open sets U(1/2) and V(1/2) which contain A and B, respectively. Now 

assume that n≥1 and the sets U(k/2
n
) and V(k/2

n
) have already been 

constructed for k = 1,...,2
n
-1. Since X is normal, for any a ∈ { 0,1,...,2

n
-1 

}, we can find two disjoint open sets which contain X \ V(a/2
n
) 

and X \ U((a+1)/2
n
), respectively. Call these two open 

sets U((2a+1)/2
n+1

) and V((2a+1)/2
n+1

), and verify the above three 

conditions. 

https://en.wikipedia.org/wiki/Dyadic_fraction
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Infimum
https://en.wikipedia.org/wiki/Dense_set
https://en.wikipedia.org/wiki/Mathematical_induction
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The Mizar project has completely formalized and automatically checked 

a proof of Urysohn's lemma in the URYSOHN3 file 

Definition : An m-dimensional topological manifold is a Hausdor↵ space 

with a countable basis in which every point has a neighborhood 

homeomorphic to an open set in Rm. 

Earlier in the semester, I left out the condition that manifolds should 

have a countable basis. The integer m is called the dimension of the 

manifold; it is uniquely determined by the manifold, because one can 

show that a nontrivial open subset in Rm can only be homeomorphic to 

an open subset in Rn when m = n. One-dimensional manifolds are called 

curves, two-dimensional manifolds are called surfaces; the study of 

special classes of manifolds is arguably the most important object of 

topology. 

Of course, people were already studying manifolds long before the 

advent of topology; back then, the word ―manifold‖ did not mean an 

abstract topological space with certain properties, but rather a 

submanifold of some Euclidean space. So the question naturally arises 

whether every abstractly defined manifold can actually be realized as a 

submanifold of some RN . The answer is yes; we shall prove a special 

case of this result, namely that every compact manifold can be embedded 

into RN for some large N. 

Remark. One can ask the same question for manifolds with additional 

structure, such as smooth manifolds, Riemannian manifolds, complex 

manifolds, etc. This makes the embedding problem more dicult: for 

instance, John Nash (who was portrayed in the movie A Beautiful Mind) 

became famous for proving an embedding theorem for Riemannian 

manifolds. 

Of course, every m-dimensional manifold can ―locally‖ be embedded 

into Rm; the problem is how to patch these locally defined embeddings 

together to get a ―global‖ embedding. This can be done with the help of 

the following tool. 

 

 

https://en.wikipedia.org/wiki/Mizar_system
http://www.mizar.org/JFM/Vol13/urysohn3.html
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Check In Progress 

Q. 1 Give Introduction of Urysohn‘s Lemma.  

Solution : 

……………………………………………………………………………

……………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………….………………………

………………………………………………………………… 

Q. 2 Every regular space with a countable basis is normal. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………….………………………

………………………………………………………………… 

 

10.3 EMBEDDING THEOREM: 

EMBEDDING OF TYCHONOFF SPACES 

IN RJ 
 

Theorem  (Embedding Theorem). Let X be a Tychonoff space. 

Suppose (fα)α∈J is an indexed family of continuous function fα : X cont 

−→ R satisfying the requirement that for each point x0 ∈ X, each open 

nbhd U of x0, ∃α ∈ J such that fα(x0) > 0 and R \ U ⊆ f −1 α [{0}]. Then 

the function F : X → RJ defined by 

F(x) = (fα(x))α∈J 

 is an embedding of X into RJ . If each fα maps X into [0, 1], then F 

embeds in [0, 1]J . 
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Proof. Replace n by α and RN by RJ throughout Step 2—notice that 

since we are assuming that we are given such a family, We need X to be 

T1 in order the guarantee that if x, y ∈ X and x 6= y, then there exists an 

index α such that fα(x) 6= fα(y), giving us an honest-to-God injection. 

Basically, the point is that this separates points from closed sets and we 

are able to make it separate points by demanding it be T1. 

                                                                                                                       

Remark. Such a family of functions is said to separate points from 

closed sets in X. (More generally, if for each closed set A, each x /∈ A, 

∃f, f(x) ∈/ f[A].) If we only assumed X was T1, then the existence of 

such a family implies X is Tychonoff! This follows since RJ is 

Tychonoff for any J (a product of Hausdorff is Hausdorff and a product 

of completely regular spaces is completely regular and since complete 

regularity and Hausdorffness are hereditary), thus, it follows that the 

existence of such a collection implies X is Tychonof. 

Corollary. If X is a T1 topological space and F ⊆ C(X, [0, 1]) separates 

points from closed sets, then e: X → [0, 1]F by πf (e(x)) = f(x) is an 

embedding and therefore X is Tychonoff. 

10.4 EQUIVALENT CONDITION FOR A 

SPACE TO BE TYCHONOFF. 
 

Theorem  X is a Tychonoff space iff X is homeomorphic to a 

subspace of [0, 1]J for some set J.  

Proof. ( ⇐= ) Suppose X homeomorphic to a subspace of [0, 1]J for 

some set J. Since an arbitrary product of completely regular spaces is 

completely regular and since subspaces of completely regular spaces are 

completely regular, the homeomorphic image of X is completely regular. 

Since a product of T1 spaces is T1 and any subspace of a T1 space is T1, 

X is also, T1, hence, Tychonoff. ( =⇒ ) Suppose X is Tychonoff. Let J 

index the collection of all continuous function from X into [0, 1]. For 

each x0 ∈ X and closed set A disjoint from x0, by complete regularity, 

there exists a continuous function fα : X → [0, 1] for some α ∈ J such 

that f(x0) = 1 and f[A] = {0}. But then if we replace A by the open set U 
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= X \ A, U is an open nbhd of x0 and f(x0) > 0 and f[X \ U] = {0}. Thus, 

the collection (fα)α∈J separates points from closed sets in X and thus the 

hypotheses of the embedding theorem and, hence, X is homeomorphic to 

a subspace of [0, 1]J . 

 

10.5. SECOND COUNTABLE SPACE 
 

Definition: The topological space (X,τ) is said to be Second 

Countable if there exists a basis B of τ that is countable. 

Let (X,η)(X,η) be a topological space, then XX is said to be the second 

countable space, if ηη has a countable base. 

In other words, a topological space (X,η)(X,η) is said to be the second 

countable space if it has a countable open base. A second countable 

space is also said to be a space satisfying the second axiom of 

countability. In topology, a second-countable space, also called 

a completely separable space, is a topological space whose topology has 

a countable base. More explicitly, a topological space  is second-

countable if there exists some countable collection  of open subsets 

of  such that any open subset of  can be written as a union of elements of 

some subfamily of . A second-countable space is said to satisfy 

the second axiom of countability. Like other countability axioms, the 

property of being second-countable restricts the number of open sets that 

a space can have. 

Many "well-behaved" spaces in mathematics are second-countable. For 

example, Euclidean space (R
n
) with its usual topology is second-

countable. Although the usual base of open balls is uncountable, one can 

restrict to the collection of all open balls with rational radii and whose 

centers have rational coordinates. This restricted set is countable and still 

forms a basis. 

10.5.1 Properties 

Second-countability is a stronger notion than first-countability. A space 

is first-countable if each point has a countable local base. Given a base 

https://www.emathzone.com/tutorials/general-topology/second-countable-space.html
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Countable
https://en.wikipedia.org/wiki/Base_(topology)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Countability_axiom
https://en.wikipedia.org/wiki/Well-behaved
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Open_ball
https://en.wikipedia.org/wiki/Uncountable
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/First-countable_space
https://en.wikipedia.org/wiki/Local_base
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for a topology and a point x, the set of all basis sets containing x forms a 

local base at x. Thus, if one has a countable base for a topology then one 

has a countable local base at every point, and hence every second-

countable space is also a first-countable space. However any 

uncountable discrete space is first-countable but not second-countable. 

Second-countability implies certain other topological properties. 

Specifically, every second-countable space is separable (has a 

countable dense subset) and Lindelöf (every open cover has a countable 

subcover). The reverse implications do not hold. For example, the lower 

limit topology on the real line is first-countable, separable, and Lindelöf, 

but not second-countable. For metric spaces, however, the properties of 

being second-countable, separable, and Lindelöf are all equivalent. 

Therefore, the lower limit topology on the real line is not metrizable. 

In second-countable spaces—as in metric spaces—compactness, 

sequential compactness, and countable compactness are all equivalent 

properties. 

Urysohn's metrization theorem states that every second-

countable, Hausdorff regular space is metrizable. It follows that every 

such space is completely normal as well as paracompact. Second-

countability is therefore a rather restrictive property on a topological 

space, requiring only a separation axiom to imply metrizability. 

 

10.5.2 Other Properties 

 A continuous, open image of a second-countable space is second-

countable. 

 Every subspace of a second-countable space is second-countable. 

 Quotients of second-countable spaces need not be second-countable; 

however, open quotients always are. 

 Any countable product of a second-countable space is second-

countable, although uncountable products need not be. 

 The topology of a second-countable  space has cardinality less 

than or equal to c (the cardinality of the continuum). 

https://en.wikipedia.org/wiki/Discrete_space
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Dense_(topology)
https://en.wikipedia.org/wiki/Lindel%C3%B6f_space
https://en.wikipedia.org/wiki/Open_cover
https://en.wikipedia.org/wiki/Lower_limit_topology
https://en.wikipedia.org/wiki/Lower_limit_topology
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Pavel_Samuilovich_Urysohn
https://en.wikipedia.org/wiki/Metrization_theorem
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Regular_space
https://en.wikipedia.org/wiki/Metrizable
https://en.wikipedia.org/wiki/Completely_normal_space
https://en.wikipedia.org/wiki/Paracompact
https://en.wikipedia.org/wiki/Open_map
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Subspace_(topology)
https://en.wikipedia.org/wiki/Quotient_space_(topology)
https://en.wikipedia.org/wiki/Product_space
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Cardinality_of_the_continuum
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 Any base for a second-countable space has a countable subfamily 

which is still a base. 

 Every collection of disjoint open sets in a second-countable space is 

countable. 

Example: A topological space is termed separable if it admits a 

countable dense subset. 

Proof 

Given: A second-countable space , with countable basis  

To prove: There exists a countable dense subset of  

Proof: We can assume without loss of generality that all the  are 

nonempty, because the empty ones can be discarded. Now, for each , 

pick any element . Let  be the set of these s.  is 

clearly countable (because the indexing set for its elements is countable). 

We claim that  is dense in . 

To see this, let  be any nonempty open subset of . 

Then,  contains some , and hence, . But by 

construction, , so  intersects , proving that  is dense. 

Theorem 
Let T=(S,τ) be a second-countable topological space. 

 

Then T is also a separable space. 

Proof 
By definition, there exists a countable basis B for η. 

Using the axiom of countable choice, we can obtain a choice 

function ϕ for B∖{∅}. 

Define: 

H={ϕ(B):B∈B∖{∅}} 

By Image of Countable Set under Mapping is Countable, it follows 

that H is countable. 

https://topospaces.subwiki.org/wiki/Dense_subset
https://proofwiki.org/wiki/Definition:Second-Countable_Space
https://proofwiki.org/wiki/Definition:Topological_Space
https://proofwiki.org/wiki/Definition:Separable_Space
https://proofwiki.org/wiki/Definition:Countable_Basis
https://proofwiki.org/wiki/Axiom:Axiom_of_Countable_Choice
https://proofwiki.org/wiki/Definition:Choice_Function
https://proofwiki.org/wiki/Definition:Choice_Function
https://proofwiki.org/wiki/Image_of_Countable_Set_under_Mapping_is_Countable
https://proofwiki.org/wiki/Definition:Countable_Set
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It suffices to show that H is everywhere dense in T. 

Let x∈U∈. 

By Equivalence of Definitions of Analytic Basis, there exists 

a B∈BB∈B such that x∈B⊆U. 

Then ϕ(B)∈U, and so H∩U is non-empty. 

Hence, xx is an adherent point of H. 

By Equivalence of Definitions of Adherent Point, it follows 

that x∈H−, where H− denotes the closure of H. 

Therefore, H−=S, and so H is everywhere dense in T by definition. 

 

Check In Progress 

Q. 1 Define Equivalent condition for Space. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

………………………..…………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

Q. 2 State Embedding Theorem. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

………………………..…………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

105.3 Metrization Theorems 

Introduction. What properties of a topological space (X, T ) are enough 

to guarantee that the topology actually is given by some metric? The 

space has to be normal, since we know metric spaces are normal. And the 

topology has to have a countable local basis at each point, since metric 

spaces have that property. In Chapter 6 of the text, there are theorems 

https://proofwiki.org/wiki/Definition:Everywhere_Dense
https://proofwiki.org/wiki/Equivalence_of_Definitions_of_Analytic_Basis
https://proofwiki.org/wiki/Definition:Non-Empty_Set
https://proofwiki.org/wiki/Definition:Adherent_Point/Definition_1
https://proofwiki.org/wiki/Equivalence_of_Definitions_of_Adherent_Point
https://proofwiki.org/wiki/Definition:Closure_(Topology)
https://proofwiki.org/wiki/Definition:Everywhere_Dense
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saying, ―(X, T ) is metric if and only if it has the following topological 

properties . . . ‖. The conditions are (1) the space is regular, and (2) there 

is some countability property stronger than saying there is a countable 

local basis at each point, but a little weaker than 2nd-countable (but still 

strong enough that regular + the property =⇒ normal ) . In the current 

text section, the theorem is less general: we characterize separable metric 

spaces; but this is a good introduction to the ideas. 

One of the first widely recognized metrization theorems was Urysohn's 

metrization theorem. This states that every Hausdorff second-

countable regular space is metrizable. So, for example, every second-

countable manifold is metrizable. (Historical note: The form of the 

theorem shown here was in fact proved by Tychonoff in 1926. 

What Urysohn had shown, in a paper published posthumously in 1925, 

was that every second-countable normal Hausdorff space is metrizable). 

The converse does not hold: there exist metric spaces that are not second 

countable, for example, an uncountable set endowed with the discrete 

metric.
[3]

 The Nagata–Smirnov metrization theorem, described below, 

provides a more specific theorem where the converse does hold. 

Several other metrization theorems follow as simple corollaries to 

Urysohn's Theorem. For example, a compact Hausdorff space is 

metrizable if and only if it is second-countable. 

Urysohn's Theorem can be restated as: A topological space 

is separable and metrizable if and only if it is regular, Hausdorff and 

second-countable. The Nagata–Smirnov metrization theorem extends this 

to the non-separable case. It states that a topological space is metrizable 

if and only if it is regular, Hausdorff and has a ζ-locally finite base. A ζ-

locally finite base is a base which is a union of countably many locally 

finite collections of open sets. For a closely related theorem see the Bing 

metrization theorem. 

Separable metrizable spaces can also be characterized as those spaces 

which are homeomorphic to a subspace of the Hilbert cube , i.e. the 

countably infinite product of the unit interval (with its natural subspace 

topology from the reals) with itself, endowed with the product topology. 

https://en.wikipedia.org/wiki/Second-countable
https://en.wikipedia.org/wiki/Second-countable
https://en.wikipedia.org/wiki/Regular_space
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Andrey_Nikolayevich_Tychonoff
https://en.wikipedia.org/wiki/Pavel_Samuilovich_Urysohn
https://en.wikipedia.org/wiki/Normal_space
https://en.wikipedia.org/wiki/Metrization_theorem#cite_note-3
https://en.wikipedia.org/wiki/Nagata%E2%80%93Smirnov_metrization_theorem
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Nagata%E2%80%93Smirnov_metrization_theorem
https://en.wikipedia.org/wiki/Locally_finite_collection
https://en.wikipedia.org/wiki/Locally_finite_collection
https://en.wikipedia.org/wiki/Bing_metrization_theorem
https://en.wikipedia.org/wiki/Bing_metrization_theorem
https://en.wikipedia.org/wiki/Homeomorphic
https://en.wikipedia.org/wiki/Hilbert_cube
https://en.wikipedia.org/wiki/Product_topology
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A space is said to be locally metrizable if every point has a 

metrizable neighbourhood. Smirnov proved that a locally metrizable 

space is metrizable if and only if it is Hausdorff and paracompact. In 

particular, a manifold is metrizable if and only if it is paracompact. 

 

How does one prove that some topology on a space is given by a metric? 

There are two choices: either explicitly define the metric and prove the 

metric topology is the same as T , or show that X is homeomorphic to a 

subspace of a known metric space. We used the first approach when we 

defined a metric on R ω that generates the product topology; and now we 

will see a good example of the other approach, which is also how the 

most general metrization theorems are proven. 

Theorem (Urysohn metrization theorem). If (X, T ) is a regular space 

with a countable basis for the topology, then X is homeomorphic to a 

subspace of the metric space R ω 

The way I stated the above theorem, it is ambiguous: we have studied 

two (inequivalent) metrics for R ω : the product space metric and the 

uniform metric. The theorem is true with either metric, but it is an ―if and 

only if‖ for the product metric. Recall that in the product topology, R ω 

has a countable dense subset: the set S = all vectors (q1, q2, . . .) where 

each qi ∈ Q and all but finitely many qi are 0. Since R ω in the product 

topology is metrizable and has a countable dense subset, it must be 2nd-

countable. Each subspace of space with a countable basis also has a 

countable basis. And, of course, each subspace of a metric space is 

metric. We conclude that each subspace of (R ω , product metric) is 

metric and has a countable basis. 

The above paragraph combines ideas from various parts of our course. 

So let us take this as one (bunch of) of our sample problems for the Final 

Exam. Your task s to organize the various facts, ideas, etc. into a 

coherent proof (and to be able to fill in details if asked); as always, an 

exam problem might involve filling in the details of one particular part of 

a longer argument). 

Problem. 

https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
https://en.wikipedia.org/wiki/Paracompact
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If (X, T ) is homeomorphic to a subspace of (R ω , product topology), 

then (X, T ) is regular and has a countable basis. 

Key steps:  

a. There is a metric on R ω that gives the product topology.  

b. R ω in the product topology has a countable dense subset.  

c. A metric space with a countable dense subset has a countable basis for 

the topology.  

d. Each subspace of a 2nd-countable space is 2nd-countable. e. Each 

subspace of a metric space is metrizable.  

e. Each metric space is regular. f. Put the pieces together. 

                     On the other hand, the metric space (R ω , uniform metric) 

is not second-countable (so not separable) since it has an uncountable 

discrete subspace K = the set of all vectors (t1, t2, . . .) where each ti = 0 

or 1. The set of all sequences of 0‘s and 1‘s is uncountable, and the 

distance between any two elements of K is 1. So each subspace of (R ω , 

uniform metric topology) is a metric space, but it need not be separable. 

We really should state the Urysohn metrization theorem as two theorems: 

Theorem. (X, T ) is regular with a countable basis ⇐⇒ (X, T ) is 

homeomorphic to a subspace of (R ω , product topology metric).  

Theorem. (X, T ) is regular with a countable basis =⇒ (X, T ) is 

homeomorphic to a subspace of (R ω , uniform metric topology). 

Proving the metrization theorem[s]. The text gives the details, so I will 

focus on the gestalt and some highlights. Our goal is to define an 

embedding of X into R ω . We want to assign to each point x ∈ X a point 

F(x) ∈ R ω , that is a (countably infinite) list of ―coordinates‖: F(x) = 

(x1, x2, . . .). How can we find numbers that measure how a point x ∈ X 

is related topologically to all the other points of X? This is the bit of 

magic in this theorem. We will use Urysohn‘s lemma infinitely many 

times to define a sequence of functions fn : X → [0, 1]; these will be the 

coordinate functions. 

The space (X, T ) has a countable basis B and it it regular, so it is normal. 

Given any closed set A and open neighborhood U(A), there exists a 
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Urysohn function for the disjoint closed sets X − U and A. That is, there 

exists f : X → [0, 1] such that f(x) = 0 for all x /∈ U and f(a) = 1 for all a 

∈ A. In particular, for any pair Bn, Bm of elements of B that happen to 

have B¯ n ⊆ Bm, there exists a function f : X → [0, 1] with f = 1 on B¯ n 

and f = 0 outside Bm. 

Since B is countable, the set of such pairs Bn, Bm is countable. Number 

these pairs in any order, and let f1, f2, . . . be the Urysohn functions 

defined in the preceding paragraph. Then define F : X → [0, 1] by 

F(x) = (f1(x), f2(x), . . .). 

We need to prove that the function F is 1-1, continuous, and has a 

continuous inverse (From F(X) → X). The questions of continuity have 

to depend on what topology we use for R ω . But we can check 

injectivity before worrying about the topology 

Proposition. The function F : X → R ω is injective 

Proof. Suppose x, y ∈ X with x 6= y. Since X is Hausdorff, there exist 

disjoint neighborhoods U(x), V (y). Since B is a basis, there exists some 

Bm with x ∈ Bm ⊆ U. Since X is regular, there exists a neighborhood U ′ 

(x) such that U¯′ ⊆ Bm. And, again since B is a basis, there exists a basis 

set Bn with x ∈ Bn ⊆ U ′ . Since U¯′ ⊆ Bm, we thus have B¯ n ⊆ Bm. 

The Urysohn function fj associated to the pair Bn, Bm has x → 1 and y 

→ 0; so F(x) 6= F(y). 

The text goes on to show that, in the product topology, F is continuous 

and has a continuous inverse. The proof that F is continuous is easy 

because each coordinate function is continuous; the proof that F is an 

open map takes more work; see the text for the details. 

To use the uniform topology, we need to change F. Recall that in the 

product topology, if we are studying a function from a space into a 

product space, i.e. some G : Y → Q α∈J Xα, and we want to show that G 

is continuous, it is sufficient to check that each component function Gα : 

Y → Xα is continuous. But in the uniform topology, this is not sufficient. 

Example (Page 127, problem 4a). The function G : R → R ω defined by 

G(t) = (t, 2t, 3t, 4t, . . .) is not continuous in the uniform topology on R ω 
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. In particular, there is no neighborhood of 0 that is mapped by G into a 

uniform ǫ-neighborhood of (0, 0, 0, . . .).  

To make the coordinate function F topologically ―well-behaved‖ for the 

uniform metric on R ω , we need to eliminate the difficulty suggested by 

the above example. We do this by making the coordinate functions fj get 

smaller as j gets larger. Specifically, define 

G : X → R ω by G(x) = (f1(x), 1 2 f2(x), 1 3 f3(x), 1 4 f4(x), . . .)  

There is one more part of the proofs that is ―cute‖, ―clever‖, or 

‗annoyingly slick‖, depending on your tastes: The uniform metric 

topology is finer than the product topology on R ω . SO once we know F 

is an open map in the product topology (that takes work), it is easy to see 

that F, hence G, is an open map in the uniform topology. Conversely, 

once we know G is continuous in the uniform topology (that takes work), 

it is easy to see that F is continuous in the product topology. 

Here are some sample problems for the Final Exam that you can use to 

solidify your understanding of these proofs. The first is an easier special 

case; the others are the ―standard‖ Urysohn metrization theorem. 

 

Problem: 

1. Prove: If X is a compact Hausdorff space with a countable basis, 

then there exists an embedding of X into R ω , where R ω has the 

product topology. 

2. Write a one-to-two page proof:  

If X is a regular space with a countable basis, then there exists an 

embedding of X into R ω , where R ω has the uniform topology. 

3. Write a one-to-two page proof:  

If X is a regular space with a countable basis, then there exists an 

embedding of X into R ω , where R ω has the unifom topology. 

4. If XX is finite, then a member of each ηηon XX is finite. So its 

base is finite. Hence (X,η)(X,η) is the second countable space. 

Now we show that (X,η)(X,η) is the first countable space. 

Let SS be a subbase of ηη. So, S⊆P(X)S⊆P(X) (Countable), 

then B⊆P(X)B⊆P(X) (countable), so BB is also countable. 
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Therefore, (X,η)(X,η) is the second countable space, as each local 

base is also countable, so this is also the first countable space. 

5. Consider the disjoint countable union . Define an equivalence 

relation and a quotient topology by identifying the left ends of the 

intervals - that is, identify 0 ~ 2 ~ 4 ~ … ~ 2k and so on. X is 

second-countable, as a countable union of second-countable 

spaces. However, X/~ is not first-countable at the coset of the 

identified points and hence also not second-countable. 

6. The above space is not homeomorphic to the same set of 

equivalence classes endowed with the obvious metric: i.e. regular 

Euclidean distance for two points in the same interval, and the 

sum of the distances to the left hand point for points not in the 

same interval -- yielding a strictly weaker topology than the 

above space. It is a separable metric space (consider the set of 

rational points), and hence is second-countable. 

7. The long line is not second-countable, but it is first-countable. 

 

 

10.6 SUMMARY 

 

We learnt in this unit Embedding theorem and its properties. We study 

Sketch and its properties with some examples. We study Metrization 

theorem.  

 

 

10.7 KEYWORD 
 

Embedding : Attach (a journalist) to a military unit during a conflict 

Matrization : In topology and related areas of mathematics, a metrizable 

space is a topological space that is .... of a topological space of being 

homeomorphic to a uniform space, or equivalently the topology 

being defined by a family of pseudometrics . 

Sketch : A short humorous play or performance, consisting typically of 

one scene in a revue or comedy programme 

https://en.wikipedia.org/wiki/Long_line_(topology)
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10.8 QUESTIONS FOR REVIEW  
 

1. Let X1, X2 be topological spaces, and for i = 1, 2 let pi : X1 × X2 

→ Xi be the projection map. 

a) Show that if a set U ⊆ X1 × X2 is open in X1 × X2 then pi(U) 

is open in Xi .  

b) Is it true that if A ⊆ X1 × X2 is a closed set then pi(A) must be 

closed is Xi ?  

Justify your answer 

2. Let X, Y be topological spaces. For a (not necessarily continuous) 

function f : X → Y the graph of f is the subspace Γ(f) of X × Y 

given by 

Γ(f) = {(x, f(x)) ∈ X × Y | x ∈ X} 

Show that if Y is a Hausdorff space and f : X → Y is a 

continuous function then Γ(f) is closed in X × Y . 

3. Assume that X, Y are spaces such that R ∼= X × Y . Show that 

either X or Y is consists of only one point. 

4. Let X and Y be non-empty topological spaces. Show that the 

space X × Y is connected if and only if X and Y are connected. 

5. Let {Xi}i∈I be a family of topological spaces and for i ∈ I let Ai 

be a closed set in Xi . Show that the set Q i∈I Ai is closed in the 

product topology on Q i∈I Xi . 

6. Show that the product topology on R n = R × · · · × R is the same 

as the topology induced by the Euclidean metric. 

7. If j : X → Y is an embedding and Y is a metrizable space then X 

is also metrizable. 

8. Every second countable space is the first countable space, but the 

converse may not be true. 

9. Any uncountable set X with a co-finite topology is not the first 

countable space and so it is not the second countable space. 
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10.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 1 

              Q 2 Check in Section 2 

Check in Progress-II 

Answer  Q. 1 Check in Section 3 

              Q 2 Check in Section 4 

 

 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-486-43479-6
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-486-65676-4
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UNIT 11:  CONNECTED & PATH-

CONNECTED SPACE 
 

STRUCTURE 

11.0    Objective 

11.1 Introduction 

11.1.1 Formal Definition 

11.1.2 Connected Components 

11.1.3 Disconnected Space 

11.2 Connectedness and Seperation 

11.2.1 Seperation of a Subspace 

11.2.2 Seperation Subspace 

11.2.3 Condition for a Union of Connected Sets to be Connected 

11.3 Closure Of Connected Sets 

11.3.1 Continuous Image of a Connected Space is Connected 

11.3.2 A Useful Equivalent Definition of A Connected Set 

11.3.3 A Finite Products of Connected Spaces is Connected 

11.4 Path Connected 

11.4.1 The Principle of Transfinite Induction 

11.4.2 The Long Line 

11.5 Path Connectedness 

11.5.1 Arc Connectedness 

11.5.2 Local Connectedness 

11.5.3 Graph 

11.5.4  Stronger form of Connectedness 

11.6 Path-Connected Spaces 

11.6.1 Path-Connected Components 

11.6.2 Connected vs. path connected 

https://mathstrek.blog/2013/03/07/topology-path-connected-spaces/
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11.7 Summary 

11.8  Keyword 

11.9  Questions for review  

11.10  Suggestion Reading And References 

11.11 Answer to check your progress 

11.0 OBJECTIVE 

* Learn Connected and path connected space 

* Learn Connectedness and Sepration 

* Learn Closure of Connected Sets 

* Learn diff. b/w connected and path connected 

 

11.1 INTRODUCTION 

In topology and related branches of mathematics, a connected space is 

a topological space that cannot be represented as the union of two or 

more disjoint non-empty open subsets. Connectedness is one of the 

principal topological properties that are used to distinguish topological 

spaces. 

A subset of a topological space X is a connected set if it is a connected 

space when viewed as a subspace of X. 

Some related but stronger conditions are path connected, simply 

connected, and n-connected. Another related notion is locally connected, 

which neither implies nor follows from connectedness. 

 

11.1.1 Formal definition 

A topological space X is said to be disconnected if it is the union of two 

disjoint non-empty open sets. Otherwise, X is said to be connected. 

A subset of a topological space is said to be connected if it is connected 

under its subspace topology. Some authors exclude the empty set (with 

its unique topology) as a connected space, but this article does not follow 

that practice. 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Disjoint_set
https://en.wikipedia.org/wiki/Non-empty
https://en.wikipedia.org/wiki/Open_(topology)
https://en.wikipedia.org/wiki/Topological_properties
https://en.wikipedia.org/wiki/Subspace_topology
https://en.wikipedia.org/wiki/Connected_space#Path_connectedness
https://en.wikipedia.org/wiki/Simply_connected_space
https://en.wikipedia.org/wiki/Simply_connected_space
https://en.wikipedia.org/wiki/N-connected_space
https://en.wikipedia.org/wiki/Locally_connected_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Empty_set
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For a topological space X the following conditions are equivalent: 

1. X is connected, that is, it cannot be divided into two disjoint non-

empty open sets. 

2. X cannot be divided into two disjoint non-empty closed sets. 

3. The only subsets of X which are both open and closed (clopen 

sets) are X and the empty set. 

4. The only subsets of X with empty boundary are X and the empty 

set. 

5. X cannot be written as the union of two non-empty separated 

sets (sets for which each is disjoint from the other's closure). 

6. All continuous functions from X to {0,1} are constant, where 

{0,1} is the two-point space endowed with the discrete topology. 

 

11.1.2 Connected Components 

The maximal connected subsets (ordered by inclusion) of a non-empty 

topological space are called the connected components of the space. 

The components of any topological space X form a partition of X: they 

are disjoint, non-empty, and their union is the whole space. Every 

component is a closed subset of the original space. It follows that, in the 

case where their number is finite, each component is also an open subset. 

However, if their number is infinite, this might not be the case; for 

instance, the connected components of the set of the rational numbers are 

the one-point sets (singletons), which are not open. 

Let  be the connected component of x in a topological space X, and  be 

the intersection of all clopen sets containing x (called quasi-

component of x.) Then  where the equality holds if X is compact 

Hausdorff or locally connected. 

 

11.1.3 Disconnected Spaces 

A space in which all components are one-point sets is called totally 

disconnected. Related to this property, a space X is called totally 

separated if, for any two distinct elements x and y of X, there exist 

https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Clopen_set
https://en.wikipedia.org/wiki/Clopen_set
https://en.wikipedia.org/wiki/Boundary_(topology)
https://en.wikipedia.org/wiki/Separated_sets
https://en.wikipedia.org/wiki/Separated_sets
https://en.wikipedia.org/wiki/Maximal_element
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Closed_subset
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Singleton_(mathematics)
https://en.wikipedia.org/wiki/Clopen
https://en.wikipedia.org/wiki/Locally_connected_space
https://en.wikipedia.org/wiki/Locally_connected_space
https://en.wikipedia.org/wiki/Totally_disconnected
https://en.wikipedia.org/wiki/Totally_disconnected
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disjoint open sets U containing x and V containing y such that X is the 

union of U and V. Clearly, any totally separated space is totally 

disconnected, but the converse does not hold. For example take two 

copies of the rational numbers Q, and identify them at every point except 

zero. The resulting space, with the quotient topology, is totally 

disconnected. However, by considering the two copies of zero, one sees 

that the space is not totally separated. In fact, it is not even Hausdorff, 

and the condition of being totally separated is strictly stronger than the 

condition of being Hausdorff. 

Examples 

 The closed interval [0, 2] in the standard subspace topology is 

connected; although it can, for example, be written as the union of [0, 

1) and [1, 2], the second set is not open in the chosen topology of [0, 

2]. 

 The union of [0, 1) and (1, 2] is disconnected; both of these intervals 

are open in the standard topological space [0, 1) ∪ (1, 2]. 

 (0, 1) ∪ {3} is disconnected. 

 A convex subset of R
n
 is connected; it is actually simply connected. 

 A Euclidean plane excluding the origin, (0, 0), is connected, but is 

not simply connected. The three-dimensional Euclidean space 

without the origin is connected, and even simply connected. In 

contrast, the one-dimensional Euclidean space without the origin is 

not connected. 

 A Euclidean plane with a straight line removed is not connected 

since it consists of two half-planes. 

 ℝ, The space of real numbers with the usual topology, is connected. 

 If even a single point is removed from ℝ, the remainder is 

disconnected. However, if even a countable infinity of points are 

removed from , where n ≥ 2, the remainder is connected. If n ≥ 3, 

then  remains simply connected after removal of countable many 

points. 

 Any topological vector space, e.g. any Hilbert space or Banach 

space, over a connected field (such as  or ), is simply connected. 

https://en.wikipedia.org/wiki/Open_sets
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Subspace_topology
https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Simply_connected_set
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Topological_vector_space
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Banach_space
https://en.wikipedia.org/wiki/Banach_space
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 Every discrete topological space with at least two elements is 

disconnected, in fact such a space is totally disconnected. The 

simplest example is the discrete two-point space.
[1]

 

 On the other hand, a finite set might be connected. For example, the 

spectrum of a discrete valuation ring consists of two points and is 

connected. It is an example of a Sierpiński space. 

 The Cantor set is totally disconnected; since the set contains 

uncountably many points, it has uncountably many components. 

 If a space X is homotopy equivalent to a connected space, then X is 

itself connected. 

 The topologist's sine curve is an example of a set that is connected 

but is neither path connected nor locally connected. 

 The general linear group  (that is, the group of n-by-n real, invertible 

matrices) consists of two connected components: the one with 

matrices of positive determinant and the other of negative 

determinant. In particular, it is not connected. In contrast,  is 

connected. More generally, the set of invertible bounded operators on 

a complex Hilbert space is connected. 

 The spectra of commutative local ring and integral domains are 

connected. More generally, the following are equivalent
[2]

 

1. The spectrum of a commutative ring R is connected 

2. Every finitely generated projective module over R has 

constant rank. 

3. R has no idempotent  (i.e., R is not a product of two rings in a 

nontrivial way). 

An example of a space that is not connected is a plane with an infinite 

line deleted from it. Other examples of disconnected spaces (that is, 

spaces which are not connected) include the plane with 

an annulus removed, as well as the union of two disjoint closed disks, 

where all examples of this paragraph bear the subspace topology induced 

by two-dimensional Euclidean space. 

 

https://en.wikipedia.org/wiki/Discrete_topological_space
https://en.wikipedia.org/wiki/Totally_disconnected_space
https://en.wikipedia.org/wiki/Discrete_two-point_space
https://en.wikipedia.org/wiki/Connected_space#cite_note-1
https://en.wikipedia.org/wiki/Discrete_valuation_ring
https://en.wikipedia.org/wiki/Sierpi%C5%84ski_space
https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Homotopy
https://en.wikipedia.org/wiki/Topologist%27s_sine_curve
https://en.wikipedia.org/wiki/General_linear_group
https://en.wikipedia.org/wiki/Local_ring
https://en.wikipedia.org/wiki/Connected_space#cite_note-2
https://en.wikipedia.org/wiki/Finitely_generated_projective_module
https://en.wikipedia.org/wiki/Idempotent
https://en.wikipedia.org/wiki/Annulus_(mathematics)
https://en.wikipedia.org/wiki/Disk_(mathematics)
https://en.wikipedia.org/wiki/Subspace_(topology)
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11.2 CONNECTEDNESS AND 

SEPARATIONS 
 

Definition (Separation & Connected Spaces). Let X be a topological 

space. A separation of X is a pair U, V of nonempty, disjoint open 

subsets of X whose union is X. The space X is said to be connected if 

there does not exist a separation of X. 

Remark. In the above definition, notice that if X can be separated by 

nonempty sets U and V , then U ∪· V = X so that X \ U = V . That is, U c 

= V where the complement is understood to be with respect to the space 

X. 

Proposition . A space X is connected iff the only subsets of X that are 

both open and closed in X are Ø and X itself. 

 Proof. We prove the equivalent statement: A space X is not connected 

iff there exists a nonempty proper subset of X that is clopen. ( ⇐= ) If A 

⊂ X is a proper subset of X that is clopen in X, then the sets U = A and V 

= X \A constitute a separation of X for they are nonempty, disjoint open 

sets and their union is X. ( =⇒ ) Conversely, if X is not connected, then it 

has a separation—say U and V form a separation of X. Then U 6= X is 

nonempty and U c = V is open, so U is clopen. Since V = X \ U, we‘re 

done. 

11.2.1 A Separation (A, B) of a Subspace Y ⊆ X 

Satisfies A ∩ B = A ∩ B = Ø in X. 
For a subspace Y of a topological space X, there is another useful way of 

formulating the definition of connectedness:  

Lemma 6. Let Y be subspace of X. Then the sets A and B form a 

separation of Y iff A and B are a pair of disjoint nonempty sets whose 

union is Y and neither of which contain a limit point of the other (i.e., A 

∩ B = A ∩ B = Ø in X). If there exists no separation of Y , then Y is 

connected. 

Proof. ( =⇒ ) Suppose A and B separate Y . Then A, B 6= Ø, are open 

and disjoint subsets of Y such that A ∪· B = Y . By Theorem 1.2, ClY 
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(A) = ClX(A) ∩ Y and since A is closed in Y , A = ClX(A) ∩ Y . But 

then ClX(A) ∩ B = Ø. Since ClX(A) is the union of A and its limit 

points, this means that B contains no limits points of A. Since B = Ac , 

the same reasoning shows that A∩ClX(B) = Ø. ( ⇐= ) Suppose A and B 

are disjoint, nonempty sets whose union is Y and neither of which 

contains a limit point of the other. Letting bars denote closures in X, then 

A ∩ B = A ∩ B = Ø; therefore, we conclude that A ∩ Y = A and B ∩ Y 

= B. Thus, both A and B are closed in Y and since A = Y \ B and B = Y \ 

A, it follows that A and B are both open in Y as well. 

11.2.2 Separations Absorb Connected Subspaces. 

Lemma 7. If the sets C and D form a separation of X, and if Y is a 

connected subspace of X, then Y lies entirely within either C or D. 

Proof. Since C and D are both open in X, C ∩ Y and D ∩ Y are open in 

Y . These two sets are disjoint and their union is Y ; if they were both 

nonempty, they would constitute a separation of Y . Therefore, one of 

them is empty. Hence, Y must lie entirely within either C or D.  

 

11.2.3 Condition for a Union of Connected Sets to 

be Connected. 
Theorem : If {Cα}α∈A is a family of connected subspaces of X such 

that T α∈A Cα 6= Ø, then S α∈A Cα is connected. Proof. Let p ∈ T α∈A 

Cα and put Y = S α∈A Cα. Suppose on the contrary that Y = C ∪· D is a 

separation of Y . Then either p ∈ C or p ∈ D. Suppose WLOG p ∈ C. 

Since Cα is connected, it must lie entirely in either C or D by the lemma, 

and it cannot lie in D since p ∈ C ∩ Cα. Hence, Cα ⊆ C for every α ∈ A 

so that Y = S α∈A Cα ⊆ C, contradicting the fact D 6= Ø.  

REMARK. WE SHALL GENERALIZE THIS THEOREM IN THE 

EXERCISES. 

 

Check In Progress 

Q. 1 Define Connected Space. 
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Solution : 

……………………………………………………………………………

……………………………………………………………………………

………………………..…………………………………………………

……………………………………………………………………………

……………………………………………………………… 

……………………………………………………………………………

……………….. 

Q. 2 Define Disconnected Space. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

………………………..…………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

11.3 CLOSURES OF CONNECTED SETS. 
 

Theorem 6.29. Let A be a connected subspace of X. If A ⊆ B ⊆ A, 

then B is also connected. 

 Proof. Suppose B = C ∪· D is a separation of B. By the above lemma, A 

must lie entirely in C or in D; suppose that A ⊆ C WLOG. Then A ⊆ C. 

By Lemma 6, C ∩ D = Ø, so B cannot intersect D. This contradicts the 

assumption that D 6= Ø.  

Corollary 4. Let A be a connected subspace of X. Then A is 

connected. 

Proof. This is a special case of the above more general theorem 

11.3.1 Continuous Image of a Connected Space is 

Connected. 
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Theorem 6.30. The image of a connected space under a continuous map 

is connected. 

Proof. Let f : X cont −→ Y ; let X be connected. We wish to show that Z 

= f[X] is connected. Since the map obtained from f by restricting its 

range is also continuous, it suffices to consider the case that f is 

surjective as well. Suppose that Y = A ∪· B is a separation of Y . Then f 

−1 [A], and f −1 [B] are open by continuity, clearly disjoint and 

nonempty since f is surjective and hence comprise a separation of X, 

contradicting the assumption that X was connected. 

Corollary 5 (Invariance of Connectedness Under Homeomorphism). 

If Y is connected and f : X → Y is a homeomorphism, then X is 

connected. 

Proof. f −1 : Y → X is a continuous surjective map and hence by the 

theorem, f −1 [Y ] = X is connected.  

 

11.3.2 A Useful Equivalent Definition of A 

Connected Set. 
 

Definition (Totally Disconnected Space). A totally disconnected space 

is one in which the only nonempty connected sets are singletons. 

Remark. Totally Disconnected spaces exist. For instance, Z ⊆ R with 

the subspace topology or even {0, 1} ⊆ R with the subspace topology. 

Proposition 20. A space X is connected iff there is a totally disconnected 

space Y of cardinality greater than one such that every continuous 

function f : X → Y is constant. 

Proof. ( =⇒ ) Fix Y a totally disconnected space with #(Y ) > 1. Suppose 

X is connected. If X = Ø, this is vacuously true so suppose X 6= Ø. By 

the theorem above, if f : X → Y is continuous, then f[X] is connected 

and nonempty and, hence, must be a singleton. Since Y was arbitrary, 

we‘re done. ( ⇐= ) WLOG fix Y a totally disconnected space of 

cardinality greater than one. Suppose for the sake of a contradiction that 
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every continuous function f : X → Y is constant but that X is not 

connected. Let U, V be a separation of X and define g : X → Y by g(x) = 

y0 and g(x) = y1. We claim g is continuous. To see this, note that g −1 

[{y0}] = U which is open and nonempty, g −1 [{y1}] = V which is open 

and nonempty and g −1 [Y ] = X. Hence, it is clear that for every open 

subset B ⊆ Y , g −1 [B] is open so that g is continuous, contradicting the 

assumption that every continuous function is constant. Since Y was 

arbitrary, we‘re done. 

Remark. The proof of the above proposition reveals that the choice of a 

totally disconnected space Y of cardinality greater than one does not 

matter. 

Hence, we might rephrase the above proposition as follows: 

Proposition 21. A space X is connected iff every continuous function f : 

X → {0, 1} is constant.  

Proof. Virtually the same as above.  

Thus, in actual practice we use this second formulation, where we put Y 

= {0, 1} a subspace R. This makes things nice. 

 

11.3.3 A Finite Products of Connected Spaces is 

Connected. 
Theorem 6.31. A finite product of spaces is connected iff each space is 

connected. 

Proof. ( =⇒ ) Suppose X = Qn i=1 Xi is connected. This direction is 

trivial as the projection maps πα : X → Xα are continuous and surjective, 

so that πα[X] = Xα forcing Xα to be connected. ( ⇐= ) This is the meat 

of the problem. The proof is by induction. Since the induction step is 

clear, we prove the base case of two connected spaces, say X and Y . The 

idea is to write the space as a union of connected spaces all sharing a 

common point so that we may apply Theorem 1.28—what we shall do in 

this proof is move ―vertical slices‖ along a ―horizontal slice‖.  
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        Towards this end, choose a ―base point‖ (a, b) ∈ X × Y . Note that 

the ―horizontal slice‖ X × {b} is connected being homeomorphic to X 

and each ―vertical slice‖ {x} × Y is connected being homeomorphic with 

Y . Hence, each ―T-shaped‖ space. 

Tx = (X × {b}) ∪ ({x} × Y ) 

is connected by as it is union of two connected spaces that have the point 

(x, b) in common. Now the union X × Y = S x∈X Tx of all these T-

shaped spaces is connected because it is a union of connected spaces 

such that T x∈X Tx 6= Ø since (a, b) ∈ T x∈X Tx. Hence, X × Y is 

connected.  

Remark. It is natural to ask whether this theorem extends to arbitrary 

products of connected spaces. The answer depends on which topology is 

used for the product. For example, if we suppose for the moment that we 

know R is connected, then RN is not connected the box topology but it is 

connected in the product topology. Indeed, a arbitrary product of 

connected spaces is connected in the product topology and we shall 

prove this in an exercise. 

Example . Let RN have the box topology. We can write RN as the union 

of the set A consisting of all bounded sequences and B consisting of all 

unbounded sequences. These sets are disjoint, and each is open in the 

box topology, for if a ∈ RN, the open set U = Q i∈N(ai − 1, ai + 1) 

consists entirely of bounded sequences if a is bounded and unbounded 

sequences if a is unbounded. Thus, even though R is connected (as we 

shall prove), RN is not connected in the box topology. 

11.4 PATH CONNECTED 
 

Definition (Paths & Path-Connected Spaces). Given points x and y of the 

space X, a path in X from x to y is a continuous map f : [0, 1] → X (or 

[a, b] ⊆ R) such that f(0) = x and f(1) = y. A space X is said to be path-

connected if every pair of points of X can be joined by a path in X. 

Proposition  (Path Connected Spaces are Connected). Let X be a path 

connected space. Then X is connected.  
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Proof. Suppose for the sake of a contradiction that X has a separation A, 

B. Let a ∈ A and b ∈ B and let f : [0, 1] → X be a path in X from a to b. 

Since we have seen [a, b] is connected and that continuous images of 

connected sets, it follows that f [[0, 1]] is a connected subspace of X and, 

hence, lies entirely in A or entirely in B. But then it is impossible that 

f(0) = a and f(1) = b, a contradiction.  

 

A Connected Space That is Not Path-Connected. 

Example . Let S = {(x,sin(1/x)): 0 < x ≤ 1} ⊆ R be a subspace. Because 

S is the image of the connected set (0, 1] under a continuous map, S is 

connected and hence its closure S in R2 is connected as well. We call S 

the topologist‘s sine curve; S = ({0} × [−1, 1]) ∪· S. We shall show that 

S is not connected. Suppose f : [0, 1] → S is a path beginning at the 

origin and ending at a point of S. The set f 
−1

 [{0} × [−1, 1]] is closed as f 

is continuous and {0} ×[−1, 1] is closed in R2 and hence S and it is 

bounded as it is a subset of [0, 1]. Hence, putting α = sup f 
−1

 [{0} × [−1, 

1]], we have α ∈ f 
−1

 [{0} × [−1, 1]]. Then the restriction f : [α, 1] → S is 

a path that maps α into {0} × [−1, 1] and maps (b, c] into S. Write f(t) = 

(xf (t), yf (t)) and note that for t > 0, yf (t) = sin(1/xf (t)). Given n ∈ N, 

choose u ∈ R such that 0 < u < xf (1/n)) and such that sin(1/u) = (−1)n. 

By the IVT there exists tn ∈ R with 0 < tn < 1/n such that x(tn) = u. 

Repeat this process for all n ∈ N and consider the sequence (tn). Then tn 

→ 0 while yf (tn) could not possibly converge, contradicting the 

assumption of continuity of f. 

Remark. It is also useful to ―loop‖ S back in on itself (don‘t take the 

closure, connect back up with (1,sin(1))) to create a space that is useful 

for some other counter examples. 

Path-Connected Spaces Satisfy Some Analogous Properties of 

Connected Spaces. 

While the topologist‘s sine curve shows that the closure of path-

connected space need not be path-connected, it turns out that path-

connected spaces enjoy other analogous properties of connected spaces. 
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11.4.1 The Principle of Transfinite Induction. 
Reminder. Let (S, ≤) be a poset. Zorn‘s lemma states that if every non-

empty, totally ordered subset J ⊆ S has an upper bound in S (i.e., an 

element α ∈ S such that ∀j ∈ J, j ≤ α), then S contains a maximal 

element—that is, an element m such that for any x ∈ S, if x ≥ m, then x = 

m. 

Reminder (Inductive Order). Let S be a set and ≤ be a partial order on S. 

We say that ≤ is an inductive order on S if every non-empty, totally 

ordered subset J of S has an upper bound in S. In other words, an 

inductive order satisfies the hypotheses of Zorn‘s lemma. We also say 

that a set S is inductively ordered by a partial order ≤ if it satisfies the 

hypotheses of Zorn‘s lemma. 

First let us prove the principle of transfinite induction 

Exercise. Let J be a set and < be a well-order on J. For any set J0 ⊆ J 

satisfying the property that for any α ∈ J, if {x ∈ J : x < α} ⊆ J0, then α ∈ 

J, we have J0 = J. 

Proof. WLOG J 6= Ø. Let β be the minimal element of J under the well-

order < β} = Ø and certainly Ø ⊆ J0. For each α ∈ J, let Sα = {x ∈ J : x < 

α} and let T = {α ∈ J : Sα ⊆ J0}. Since β has an immediate successor, 

say β + 1, Sβ+1 ⊆ J0 so that T 6= Ø. If T 6= J, then there exists an 

element x1 ∈ J \ T that is minimal among all elements in J \ T . Let x < 

x1 be a predecessor. Then Sx ⊆ J0 as otherwise x ∈ J \ T which is 

impossible by minimality of x1. Hence, for each x < x1, Sx ⊆ J0 and 

hence x ∈ J0. Thus, {x ∈ J : x < x1} ⊆ J0 and hence x1 ∈ T , 

contradicting the assumption that x1 ∈ J \ T . Hence, J = T . But then J = 

S α∈J Sα ⊆ J0 and hence as J ⊇ J0 already, we must have J = J0, as 

desired. 

Remark. It therefore follows that if P is a property on a well-ordered set J 

with minimal element 0 and P satisfies the property that P(0) is true and 

for every α > 0, if P(y) is true for all y < α, then P(α) is true, then P(x) is 

true for every x ∈ J. 
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11.4.2 The Long Line. 
We might need to go to the index to refresh on these concepts. Recall 

that SΩ is the minimal uncountable well-ordered set—it is unique up to 

order type. We typically write SΩ = [0, Ω) or if there could be any 

confusion, SΩ = [a0, Ω) where 0 (or a0) is the smallest element of SΩ as 

guaranteed by well-ordering and by design Ω is the largest element not in 

SΩ and is such that if α < Ω, then Sα is countable (we obtain this by the 

imposition of a well-ordering on an uncountable set). Let L denote the 

set SΩ × [0, 1) in the lexicographic order (i.e., the dictionary order) with 

its smallest element deleted (i.e., (0, 0)) and with topology induced by 

this total ordering. The space L def = (0, Ω) × (0, 1] equipped with the 

order topology described is called the long line. 

Exercise. The long line is path connected and locally homeomorphic to 

R, but cannot be embedded in Rd for any d ∈ N.  

(Step 1.) Let X be an ordered set; let a < b < c be points of X. Then [a, c) 

has the order type of [0, 1) iff [a, b) and [b, c) have the order type of [0, 

1). 

 (Step 2.) Let X be an ordered set and x0 < x1 < · · · an increasing 

sequence of points in X; suppose b = sup{xi}. Then [x0, b) has the order 

type of [0, 1) iff each interval [xi , xi+1) has the order type of [0, 1).  

(Step 3.) Let a0 denote the smallest element of SΩ. For each element a ∈ 

SΩ \ {a0}, show that [a0 × 0, a × 0) of SΩ × [0, 1) has the order type of 

[0, 1). [Hint: Proceed by transfinite induction. Either a has an immediate 

predecessor in SΩ or there is an increasing sequence (ai) in SΩ with a = 

sup{ai}.] 

(Step 4.) L is path-connected. 

 (Step 5.) Every point of L has a nbhd homeomorphic with an open 

interval in R—thus, L is locally Euclidean.  

(Step 6.) L cannot be embedded in Rd for any d ∈ N. [Hint: Any 

subspace of Rd is second-countable.] 

Proof. Let us prove steps (1), (2) and (3) as ―lemmas‖, first. 
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(Step 1.) Let X be an ordered step and a < b < c be points of X. ( =⇒ ) 

Suppose [a, c) has the order type of [0, 1)—that is, there is an order-

preserving bijection between them—we wish to prove that [a, b) and [b, 

c) have the order type of [0, 1). Let ϕ: [a, c) → [0, 1) be an order-

preserving bijection; then ϕ embeds [a, b) and [b, c) in [0, 1) in an order-

preserving manner. Now, we contend that ϕ[[a, c)] and ϕ[[b, c)] are 

intervals in [0, 1). If ϕ[[a, c)] ⊆ [0, 1) were not an interval, then there 

exists an element x ∈ [0, 1) such that ϕ(a) < x < ϕ(c) but x /∈ ϕ[[a, c)] 

which is impossible, clearly, by virtue of our assumption on ϕ—a similar 

argument works for [b, c). We may write ϕ[[a, b)] = [ϕ(a), ϕ(b)) since ϕ 

must map a to 0 and since ϕ[[a, b)] ∩ ϕ[[b, c)] = Ø so that ϕ(b) ∈/ ϕ[[a, 

b)]. This is clear. It therefore suffices to show that there is an order-

preserving bijection between an interval [α, β) ⊆ [0, 1) with [0, 1) where 

β > α. It is clear that we may assume α = 0 WLOG. Thus, we must show 

that there is an order-preserving bijection between [0, β) ⊆ [0, 1) and [0, 

1). This is trivial: Define ψ: [0, β) → [0, 1) by ψ(x) = x/β. This is an 

injective linear map and thus is order-preserving and is a bijection 

because ψ(0) = 0 and ψ(1) = 1. ( ⇐= ) Suppose ϕ1 : [a, b) → [0, 1) is an 

ordering-preserving bijection and ϕ2 : [b, c) → [0, 1) is an order-

preserving bijection. Define ψ: [a, c) → [0, 1) by 

this is obviously an order-preserving bijection.  

11.5 PATH CONNECTEDNESS 

 

A path-connected space is a stronger notion of connectedness, requiring 

the structure of a path. A path from a point x to a point y in a topological 

space X is a continuous function ƒ from the unit interval [0,1] 

to X with ƒ(0) = x and ƒ(1) = y. A path-component of X is 

an equivalence class of X under the equivalence relation which 

makes x equivalent to y if there is a path from x to y. The space X is said 

to be path-connected (or pathwise connected or 0-connected) if there 

is exactly one path-component, i.e. if there is a path joining any two 

points in X. Again, many authors exclude the empty space. 

https://en.wikipedia.org/wiki/Path_(topology)
https://en.wikipedia.org/wiki/Path_(topology)
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Continuous_function_(topology)
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Equivalence_relation
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Every path-connected space is connected. The converse is not always 

true: examples of connected spaces that are not path-connected include 

the extended long line L* and the topologist's sine curve. 

Subsets of the real line R are connected if and only if they are path-

connected; these subsets are the intervals of R. Also, open 

subsets of R
n
 or C

n
 are connected if and only if they are path-connected. 

Additionally, connectedness and path-connectedness are the same 

for finite topological spaces. 

 

Check In Progress 

Q. 1 Let J be a set and < be a well-order on J. For any set J0 ⊆ J 

satisfying the property that for any α ∈ J, if {x ∈ J : x < α} ⊆ J0, then α ∈ 

J, we have J0 = J. 

Solution 

……………………………………………………………………………

……………………………………………………………………………

……………………..……………………………………………………

…………………………………..………………………………………

……………………………………………………………………………

…………………………………………………………………… 

Q. 2 Define Long Line. 

Solution 

……………………………………………………………………………

……………………………………………………………………………

……………………..……………………………………………………

…………………………………..………………………………………

……………………………………………………………………………

…………………………………………………………………… 

 

11.5.2 Arc Connectedness 

A space X is said to be arc-connected or arcwise connected if any two 

distinct points can be joined by an arc, that is a path ƒ which is 

https://en.wikipedia.org/wiki/Long_line_(topology)
https://en.wikipedia.org/wiki/Topologist%27s_sine_curve
https://en.wikipedia.org/wiki/Real_line
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Open_subset
https://en.wikipedia.org/wiki/Open_subset
https://en.wikipedia.org/wiki/Finite_topological_space
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a homeomorphism between the unit interval [0, 1] and its 

image ƒ([0, 1]). It can be shown any Hausdorff space which is path-

connected is also arc-connected. An example of a space which is path-

connected but not arc-connected is provided by adding a second copy 0' 

of 0 to the nonnegative real numbers [0, ∞). One endows this set with 

a partial order by specifying that 0'<a for any positive number a, but 

leaving 0 and 0' incomparable. One then endows this set with the order 

topology, that is, one takes the open intervals (a, b) = {x | a < x < b} and 

the half-open intervals [0, a) = {x | 0 ≤ x < a}, [0', a) = {x | 0' ≤ x < a} as 

a base for the topology. The resulting space is a T1 space but not 

a Hausdorff space. Clearly 0 and 0' can be connected by a path but not by 

an arc in this space. 

 

11.5.3 Local Connectedness 

A topological space is said to be locally connected at a point x if every 

neighbourhood of x contains a connected open neighbourhood. It 

is locally connected if it has a base of connected sets. It can be shown 

that a space X is locally connected if and only if every component of 

every open set of X is open. 

Similarly, a topological space is said to be locally path-connected if it 

has a base of path-connected sets. An open subset of a locally path-

connected space is connected if and only if it is path-connected. This 

generalizes the earlier statement about R
n
 and C

n
, each of which is 

locally path-connected. More generally, any topological manifold is 

locally path-connected. 

 

https://en.wikipedia.org/wiki/Homeomorphism
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Base_(topology)
https://en.wikipedia.org/wiki/T1_space
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Locally_connected_space
https://en.wikipedia.org/wiki/Base_(topology)
https://en.wikipedia.org/wiki/Topological_manifold
https://en.wikipedia.org/wiki/File:Topologists_(warsaw)_sine_curve.png
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The topologist's sine curve is connected, but it is not locally connected 

Locally connected does not imply connected, nor does locally path-

connected imply path connected. A simple example of a locally 

connected (and locally path-connected) space that is not connected (or 

path-connected) is the union of two separated intervals in , such as R. 

A classical example of a connected space that is not locally connected is 

the so called topologist's sine curve, defined as , with the Euclidean 

topology induced by inclusion in C. 

 

THEOREMS 

 Main theorem of connectedness: Let X and Y be topological spaces 

and let ƒ : X → Y be a continuous function. If X is (path-)connected 

then the image ƒ(X) is (path-)connected. This result can be 

considered a generalization of the intermediate value theorem. 

 Every path-connected space is connected. 

 Every locally path-connected space is locally connected. 

 A locally path-connected space is path-connected if and only if it is 

connected. 

 The closure of a connected subset is connected. Furthermore, any 

subset between a connected subset and its closure is connected. 

 The connected components are always closed (but in general not 

open) 

 The connected components of a locally connected space are also 

open. 

 The connected components of a space are disjoint unions of the path-

connected components (which in general are neither open nor 

closed). 

 Every quotient of a connected (resp. locally connected, path-

connected, locally path-connected) space is connected (resp. locally 

connected, path-connected, locally path-connected). 

 Every product of a family of connected (resp. path-connected) spaces 

is connected (resp. path-connected). 

https://en.wikipedia.org/wiki/Separated_sets
https://en.wikipedia.org/wiki/Topologist%27s_sine_curve
https://en.wikipedia.org/wiki/Euclidean_topology
https://en.wikipedia.org/wiki/Euclidean_topology
https://en.wikipedia.org/wiki/Induced_topology
https://en.wikipedia.org/wiki/Continuous_(topology)
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Intermediate_value_theorem
https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Quotient_space_(topology)
https://en.wikipedia.org/wiki/Product_topology
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 Every open subset of a locally connected (resp. locally path-

connected) space is locally connected (resp. locally path-connected). 

 Every manifold is locally path-connected. 

 

11.5.4 Graphs 

Graphs have path connected subsets, namely those subsets for which 

every pair of points has a path of edges joining them. But it is not always 

possible to find a topology on the set of points which induces the same 

connected sets. The 5-cycle graph (and any n-cycle with n > 3 odd) is 

one such example. 

As a consequence, a notion of connectedness can be formulated 

independently of the topology on a space. To wit, there is a category of 

connective spaces consisting of sets with collections of connected 

subsets satisfying connectivity axioms; their morphisms are those 

functions which map connected sets to connected sets (Muscat & 

Buhagiar 2006). Topological spaces and graphs are special cases of 

connective spaces; indeed, the finite connective spaces are precisely the 

finite graphs. 

However, every graph can be canonically made into a topological space, 

by treating vertices as points and edges as copies of the unit 

interval (see topological graph theory#Graphs as topological spaces). 

Then one can show that the graph is connected (in the graph theoretical 

sense) if and only if it is connected as a topological space. 

 

11.5.5 Stronger Forms of Connectedness 

There are stronger forms of connectedness for topological spaces, for 

instance: 

 If there exist no two disjoint non-empty open sets in a topological 

space, X, X must be connected, and thus hyperconnected spaces are 

also connected. 

 Since a simply connected space is, by definition, also required to be 

path connected, any simply connected space is also connected. Note 

https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Connected_space#CITEREFMuscatBuhagiar2006
https://en.wikipedia.org/wiki/Connected_space#CITEREFMuscatBuhagiar2006
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Topological_graph_theory#Graphs_as_topological_spaces
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Hyperconnected_space
https://en.wikipedia.org/wiki/Simply_connected_space
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however, that if the "path connectedness" requirement is dropped 

from the definition of simple connectivity, a simply connected space 

does not need to be connected. 

 Yet stronger versions of connectivity include the notion of 

a contractible space. Every contractible space is path connected and 

thus also connected. 

In general, note that any path connected space must be connected but 

there exist connected spaces that are not path connected. The deleted 

comb space furnishes such an example, as does the above-

mentioned topologist's sine curve. 

 

11.6 PATH-CONNECTED SPACES 
 

Definition. A path on a topological space X is a continuous 

map  The path is said to connect x and y in X if f(0)=x 

and f(1)=y. X is said to be path-connected if any two points can be 

connected by a path. 

In a sense, path-connectedness is more active since one requires an 

explicit path to establish it, while the earlier connectedness is more 

passive since it simply indicates a failure to decompose as a topological 

disjoint union. The two are obviously related, starting from: 

A topological space in which any two points can be joined by a 

continuous image of a simple arc; that is, a space  for any two 

points  and  of which there is a continuous mapping  of 

the unit interval  such that  and . A 

path-connected Hausdorff space is a Hausdorff space in which any two 

points can be joined by a simple arc, or (what amounts to the same thing) 

a Hausdorff space into which any mapping of a zero-dimensional sphere 

is homotopic to a constant mapping. Every path-connected space is 

connected (cf. Connected space). A continuous image of a path-

connected space is path-connected. 

https://en.wikipedia.org/wiki/Contractible_space
https://en.wikipedia.org/wiki/Comb_space
https://en.wikipedia.org/wiki/Comb_space
https://en.wikipedia.org/wiki/Topologist%27s_sine_curve
https://mathstrek.blog/2013/03/07/topology-path-connected-spaces/
https://www.encyclopediaofmath.org/index.php/Topological_space
https://www.encyclopediaofmath.org/index.php/Continuous_mapping
https://www.encyclopediaofmath.org/index.php/Connected_space
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Path-connected spaces play an important role in homotopic topology. If a 

space  is path-connected and , then the homotopy 

groups  and  are isomorphic, and this 

isomorphism is uniquely determined up to the action of the 

group . If  is a fibration with path-connected 

base , then any two fibres have the same homotopy type. 

If  is a weak fibration (a Serre fibration) over a path-connected 

base , then any two fibres have the same weak homotopy type. 

The multi-dimensional generalization of path connectedness is -

connectedness (connectedness in dimension ). A space  is said to be 

connected in dimension  if any mapping of an -dimensional 

sphere  into , where , is homotopic to a constant mapping. 

 

Theorem 1. A path-connected space X is connected. 

Proof. 

Suppose X is path-connected but not connected. There‘s a surjective 

continuous map  Pick  such that f(x)=0 

and f(y)=1. There‘s a path  such that g(0)=x and g(1)=y. 

Now the composition  is continuous and 

surjective, which contradicts the fact that [0, 1] is connected. ♦ 

The converse is not true: the topologist’s sine curve is connected 

but not path-connected. 

Let  where  

 

To see why it‘s not path-connected, suppose  is 

continuous and f(0) = (0, 0), f(1) = (1, sin(1)). 

Let  be projection maps to the x– and y-coordinates 

respectively. Then  contains 0 and 1, so its image is 

the whole [0, 1] by the intermediate value theorem. 

Hence,  Pick points  such 

that  

https://www.encyclopediaofmath.org/index.php/Homotopy_type
https://www.encyclopediaofmath.org/index.php/Serre_fibration
https://simomaths.wordpress.com/2013/03/05/topology-connected-spaces/
https://simomaths.files.wordpress.com/2013/02/warning.gif
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Since [0, 1] is compact, f is uniformly continuous. So there exists ε>0 

such that whenever  satisfy  we 

have  Since [0, 1] is compact, we‘ll 

pick m<n such that  By intermediate value theorem, 

there‘s a point u between tm and tn such 

that  Then  but 

 which is a 

contradiction. 

[ Notice it took quite a bit of effort to prove a seemingly obvious claim, 

and we needed compactness to prove it. ] 

Note also that X is closed in R
2
, and every point in Y is a point of 

accumulation of Z, so cl(Z) = X. In short, we have the first bummer. 

Conclusion. The closure of a path-connected subset Y of X is not 

necessarily path-connected. 

Proposition 2. If  is a continuous map of topological spaces 

and X is path-connected, then so is f(X). 

Proof. 

For any  we can pick  such 

that  Pick a path  such 

that  and  Then the composition gives a 

path  which connects  to  ♦ 

Proposition 3. If  is a collection of path-connected subspaces of X 

and  then so is  

Proof (Sketchy). 

Pick  If  then  and  for some 

indices i and j. Since Yi and Yj are path-connected and contain x, there‘s a 

path in Yi connecting x to y and a path in Yj connecting x to z. Hence, 

concatenating gives a path connecting y to z. ♦ 

Proposition 4. If  is a collection of path-connected spaces, 

then  is also path-connected. 

Proof. 

https://simomaths.wordpress.com/2013/02/26/topology-more-on-compact-spaces/#compact_uniform_cont
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Let  Since each  is path connected, pick a 

path  such that  Now 

let  be the path  

To check that f is continuous, let‘s use the universal property of products. 

It suffices to show  is continuous for each i, 

where  is the projection map. But  so we‘re 

done. ♦ 

 

11.6.1 Path-Connected Components 
As before, we obtain the concept of path-connected components. We 

define, for points x, y in X, a relation x ~ y if and only if they belong to 

some path-connected component. Proposition 3 then tells us this gives an 

equivalence relation. 

Definition. The equivalence classes of the above-mentioned relation are 

called the path-connected components. 

Since a path-connected component is automatically connected, each 

connected component is a disjoint union of path-connected components. 

 

11.6.2 Connected vs. path connected 

A topological space  is said to be connected if it cannot be 

represented as the union of two disjoint, nonempty, open sets. While this 

definition is rather elegant and general, if  is connected, it does not 

imply that a path exists between any pair of points in  thanks to crazy 

examples like the topologist's sine curve: 

    or  
 

 

Consider plotting . The  part creates oscillations near 

the -axis in which the frequency tends to ginfinity. After union is taken 

https://simomaths.wordpress.com/2013/02/16/topology-product-spaces-ii/


Notes 

96 

with the -axis, this space is connected, but there is no path that reaches 

the -axis from the sine curve. 

How can we avoid such problems? The standard way to fix this is to use 

the path definition directly in the definition of connectedness. A 

topological space  is said to be path connected if for 

all , there exists a path  such 

that  and . It can be shown that if  is path 

connected, then it is also connected in the sense defined previously. 

Another way to fix it is to make restrictions on the kinds of topological 

spaces that will be considered. This approach will be taken here by 

assuming that all topological spaces are manifolds. In this case, no 

strange things like (4.8) can happen,
4.7

 and the definitions of connected 

and path connected coincide [451]. Therefore, we will just say a space 

is connected. However, it is important to remember that this definition of 

connected is sometimes inadequate, and one should really say 

that  is path connected. 

11.7 SUMMARY 

We study connected and path-connected space. We study Arc 

Connectedness and its examples. We study graph and its properties. We 

study Long line. 

11.8 KEYWORD 

Arc Connectedness : In topology and related branches of mathematics, 

a connected space is a topological space that cannot be represented as 

the union of two or more disjoint non-empty open 

subsets. Connectedness is one of the principal topological properties that 

are used to distinguish topological spaces 

http://planning.cs.uiuc.edu/node140.html#eqn:topsine
http://planning.cs.uiuc.edu/footnode.html#foot12097
http://planning.cs.uiuc.edu/node858.html#HocYou61
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Graph : A diagram showing the relation between variable quantities, 

typically of two variables, each measured along one of a pair of axes at 

right angle 

11.9 QUESTIONS FOR REVIEW  
 

1. It‘s easy to see that any interval (closed, open or half-open) is path-

connected. In particular, it‘s connected. 

2. Hence  is a disjoint union 

of  and  each of which is a path-connected component. 

3. The squares [0, 1] × [0, 1] and (0, 1) × (0, 1) are path-connected by 

proposition 4. 

4. Consider Q as a subspace of R. Since the connected components are 

singleton sets, the path-connected components can‘t break them 

down any further. 

5. Take the topologist‘s sine curve  above. Y and Z are both 

path-connected since they‘re homeomorphic to intervals. Since X is 

not path-connected, the path-connected components must be Y and Z. 

Note that Y is open while Z is closed in X. This is one example where 

connected components decompose further into path-connected 

components. 
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11.11 ANSWER TO CHECK YOUR 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 1 

              Q 2 Check in Section 1.3 

Check in Progress-II 

Answer  Q. 1 Check in Section 4.1 

              Q 2 Check in Section 4.2 
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UNIT 12:  COMPACT SPACE 
 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.2 Compact Space 

12.3 The Lindel¨of Property 

12.4 Different forms of Compactness and their Relation 

12.5 Summary 

12.6 Keyword 

12.7 Questions for review  

12.8 Suggestion Reading And References 

12.9 Answer to check your progress 

12.0 OBJECTIVE 
 

After going through this unit, you will be able to:  

 Understand Local Connectedness and Compact Spaces  

  Analyse Compactness and Nets  

  Define Paracompact Spaces 

12.1 INTRODUCTION  

In mathematics, and more specifically in general 

topology, compactness is a property that generalizes the notion of a 

subset of Euclidean space being closed (that is, containing all its limit 

points) and bounded (that is, having all its points lie within some fixed 

distance of each other). Examples include a closed interval, a rectangle, 

or a finite set of points. This notion is defined for more 

general topological spaces than Euclidean space in various ways. 

https://mathoverflow.net/questions/37195/different-forms-of-compactness-and-their-relation
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/General_topology
https://en.wikipedia.org/wiki/General_topology
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Bounded_set
https://en.wikipedia.org/wiki/Closed_interval
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Topological_space
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One such generalization is that a topological space 

is sequentially compact if every infinite sequence of points sampled from 

the space has an infinite subsequence that converges to some point of the 

space. The Bolzano–Weierstrass theorem states that a subset of 

Euclidean space is compact in this sequential sense if and only if it is 

closed and bounded. Thus, if one chooses an infinite number of points in 

the closed unit interval [0, 1] some of those points will get arbitrarily 

close to some real number in that space. For instance, some of the 

numbers 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, … accumulate to 0 (others 

accumulate to 1). The same set of points would not accumulate to any 

point of the open unit interval (0, 1); so the open unit interval is not 

compact. Euclidean space itself is not compact since it is not bounded. In 

particular, the sequence of points 0, 1, 2, 3, … has no subsequence that 

converges to any real number. 

Definition. A collection A of subsets of X is said to be cover X or to be 

a covering of X if the union of elements of A is equal to X. 

Definition. A collection A of open subsets of X is said to be a open 

covering of X if its union of elements of A is equal to X. 

Definition. A space X is said to be compact if every open covering A of 

X contains a subcollection that also covers X. 

 

Example The real line R is not connected. 

Let A = {(n, n + 2)/n * Z} be a collection of open subsets of R whose 

union is 

R. But this collection does not have a finite subcollection that covers R. 

 

Example Any compact subset of a Hausdorff space is closed. 

Example Consider the upper-case letters of the alphabet { A, B, C, D, ... , 

Z } as being made up of (infinitely thin) lines. Classify them up to 

topological equivalence. 

If we treat them as being made of lines of finite thickness (so that they 

are two-dimensional sets) how does the classification change? 

If we treat them as being carved out of (say) wood (so that they are three-

dimensional sets) does the classification change again? 

https://en.wikipedia.org/wiki/Sequentially_compact
https://en.wikipedia.org/wiki/Infinite_sequence
https://en.wikipedia.org/wiki/Subsequence
https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem
https://en.wikipedia.org/wiki/Unit_interval
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Proof 

Suppose C  X is compact. To show that X - C is open we take x  X -

 C and try and show that x is in an open subset of X - C. 

For each y  C we can find disjoint open 

sets Uy and Vy separating x and y: x  Uy y  Vy . The set  Uy where 

the intersection is over all y  C does not meet C and hence is in X - C. 

Unfortunately, it is not necessarily open since a topology  is not closed 

under infinite intersections. However, since C is compact, we may 

discard all but finitely many of the Vy's and the intersection of the 

corresponding Uy's will be the open set we need. 

The answers will depend on the way you write! 

For this particular sans-serif font A  R, 

C  G  I  J  L  M  N  S  U  V  W  Z, 

D  O, E  F  T  Y, H  K and the rest (B, P, Q, X) are distinct. 

Regarding the letters as having finite thickness gives some more 

homeomorphisms. For example P  O. 

So one gets A  D  O  P  Q  R, B on its own and all the rest 

homeomorphic to one another. 

Note that the equivalence classes are distinguished by the "number of 

holes". 

Making the letters 3-dimensional does not produce any further 

homeomorphisms. 

12.2 COMPACT SPACE  
 

Definition. If Y is the subspace of X, a collection A of subset of X is 

said to cover Y if the union of this element contains Y. 

 

A topological space is compact if every open cover of  has a finite 

subcover. In other words, if  is the union of a family of open sets, there 

is a finite subfamily whose union is . A subset  of a topological 

space  is compact if it is compact as a topological space with 

the relative topology (i.e., every family of open sets of  whose union 

http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/OpenCover.html
http://mathworld.wolfram.com/OpenSet.html
http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/RelativeTopology.html
http://mathworld.wolfram.com/OpenSet.html
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contains  has a finite subfamily whose union contains Then {Aα1 

,Aα2 , . . . ,Aαn} is the finite subcollection of A that covers Y. 

Corollary 

Any real-valued function on a closed bounded interval is bounded and 

attains its bounds. 

Proof 

The closed bounded interval is compact and hence its image is compact 

and hence is also a closed bounded subset which is in fact an interval 

also, by connectedness. Thus the function is bounded and its image is an 

interval [p, q]. It attains its bounds at points mapped to p and q. 

Definitions 

A topological space is compact if every open covering has a finite sub-

covering. 

An open covering of a space X is a collection {Ui} of open sets 

with  Ui = X and this has a finite sub-covering if a finite number of 

the Ui's can be chosen which still cover X. 

The most important thing is what this means for R with its usual metric. 

Theorem 

The interval [0, 1] is compact under the usual metric on R. 

Proof 

Let {Ui} be an open covering of [0, 1]. The trick is to consider the 

set A = {x  [0, 1] | [0, x] can be covered by finitely many of the Ui's}. 

Then use the Completeness property of R to take  to be the least upper 

bound of A. 

Suppose  < 1. Then  is contained in some open set Ui0 and so lies in 

an -neighbourhood lying in Ui0 . 

But now [0,  - /2] is covered by finitely many of the Ui's and so this 

collection, together with Ui0 covers [0,  + /2] which contradicts the 

definition of . 
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A similar proof shows that any closed bounded interval of R is compact. 

We will see later that in fact any closed bounded subset of R (with its 

usual metric) is compact. 

Theorem 

A compact subset of R with its usual metric is closed and bounded. 

Proof 

If a set A  R is not closed then there is a limit point p  A. Then 

cover A by complements of closed -neighbourhoods of p for p = 

1, 
1
/2 , 

1
/3 , ... . 

For example If A = (0, 1) and p = 0 then (0, 1) = 

(
1
/2 ,1)  (

1
/3 ,1)  (

1
/4 ,1)  ... 

We cannot take a finite subcover to cover A. 

A similar proof shows that an unbounded set is not compact. 

Properties of compactness 

1. Continuous images of compact sets are compact. 

That is , if f : C  Y is continuous and C is compact then f(C) is 

compact also. 

Proof 

Let {Ui} be an open cover of f(C). Then {f 
-1

(Ui)} is an open 

cover of C and can therefore be reduced to a finite subcover. The 

corresponding collection of Ui's will be a finite sub-cover of f(C). 

 

 

Corollary 

If X is compact and ~ is any equivalence relation then X/~ is 

compact. 

Proof 

The natural map p: X  X/~ is continuous and onto. 
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2. Any closed subset of a compact space is compact. 

Proof 

If {Ui} is an open cover of A  C then each Ui = Vi  A with 

Vi oopen in C. Then the collection {Vi} together with the open 

set C - A cover C and hence have a finite subcover. The 

corresponding Ui's then cover A. 

Therefore, f
−1

 is continuous. 

Therefore, f is a homeomorphism. 2 

 

Example Any closed subset of a compact space is compact. 

Proof 

If {Ui} is an open cover of A  C then each Ui = Vi  A with Vi oopen 

in C. Then the collection {Vi} together with the open set C - A cover C 

and hence have a finite subcover. The corresponding Ui's then cover A. 

 

SEQUENTIAL COMPACTNESS 

For metric spaces there is another, perhaps more natural way of thinking 

about compactness. It is based on the following classical result. 

The Bolzano-Weierstrass theorem 

Every bounded sequence in R has a convegent subsequence. 

This is attributed to the Czech mathematician Bernhard Bolzano (1781 to 

1848) and the German mathematician Karl Weierstrass (1815 to 1897). 

From this we are led to the generalisation: 

Definition 

A metric space is sequentially compact if every bounded infinite set has a 

limit point. 

The main result is: 

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Bolzano.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Weierstrass.html
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Theorem 

A compact metric space is sequentially compact. 

Proof 

Let A be an infinite set in a compact metric space X. To prove that A has 

a limit point we must find a point p for whicch every open 

neighbourhood of p contains infinitely many points of A. 

Suppose that no such point existed. Then every point of X has an open 

neighbourhood containing only finitely many points of A. These sets 

form an open cover of X and extracting a finite open cover gives a 

covering of X meeting A in only finitely many points. This is impossible 

since A  X and A is infinite. 

 

Corollary 

In a compact metric space every bounded sequence has a convergent sub-

sequence. 

Proof 

Given the above limit point p, take xi1to be in a 1-neighbourhood 

of p, xi2to be in a 
1
/2-neighbourhood of p, ... and we get a sub-sequence 

converging to p. 

 

 

Together with the Heine-Borel theorem this implies the Bolzano-

Weierstrass theorem. 

Remark 

In fact, a metric space is compact if and only if it is sequentially 

compact. The proof that sequentially compact  comact is harder. 

Some Important Summary  

A topological space is a set X together with a set  of subsets called 

"open sets" such that: 

the subsets  and X   and  is closed under arbitrary unions and 

finite intersections. 
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Closed sets are complements of open sets. 

A basis for a topology  is a set  of subsets such that any set in  can 

be written as a union of sets in . In a metric space, the -

neighbourhoods form a basis for the topology. 

Some examples of topological spaces are: 

Any metric space with the open sets defined as above, 

The trivial topology on any set X: = { , X }, 

Certain topologies on finite sets. e.g. the Sierpinski topology: 

X = {a, b}, = { , {a}, {a, b}}, 

The cofinite (or Zariski) topology in which proper closed sets are the 

finite sets, 

The co-countable topology in which proper closed sets are the countable 

sets. 

The interior int(A) of a set A in a topological space is the largest open 

subset of A. 

The closure cl(A) of a subset A is the smallest closed subset containing A. 

A function f : X  Y between topological spaces is continuous if f 
-1

(A) is 

open in X whenever A is open in Y. 

A continuous bijection whose inverse function is also continuous is 

called a homeomorphism or topological isomorphism. 

Example. Recall the definitions: 

A closed interval is the set [a, b] = {x  R | a  x  b } 

An open interval is the set (a, b) = {x  R | a < x < b } and there are also 

open intervals 

(a, ) = {x  R | a < x }, (- , b) = {x  R | x < b } and (- , ) = R. 

A half-open interval is the set [a, b) = {x  R | a  x < b } or (a, b] = 

{x  R | a < x  b } and there are also half-open intervals [a, ) and (-

, b] defined similarly. 

Draw the graphs of continuous maps which show that any two closed 

intervals are homeomorphic (topologically equivalent). 

Prove that any two finite open intervals are homeomorphic. 

Prove that the open interval (-p/2, p/2) is homeomorphic to the real 

line R. 
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[Hint: Consider the map f(x) = tan(x).] 

Prove that any two open intervals are homeomorphic. 

Prove that any two half-open intervals are homeomorphic. 

Solution To map the interval [a, b] to [c, d] take the linear map whose 

graph is the straight line joining the point (a, c) to (b, d). 

The same map works for the finite open intervals also. 

The map x  tan(x) maps the finite open interval (-p/2, p/2) to the whole 

line R in a bijective way with the continuous inverse y  tan
-1

(y). 

The same map shows that any open interval of the form (a, ) or (- , b) 

is homeomorphic to a subinterval of (-p/2, p/2). 

Hence any open intervals are homeomorphic to finite open intervals and 

hence to each other. 

Similar methods show that all half-open intervals are homeomorphic to 

one another. 

 

Check In Progress 

Q 1. Define Compact Space. 

Solution 

……………………………………………………………………………

…….………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………… 

Q 2. A compact subset of R with its usual metric is closed and bounded. 

A compact subset of R with its usual metric is closed and bounded. 

Solution 

……………………………………………………………………………
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…….………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………… 

12.3 THE LINDEL¨OF PROPERTY 
 

In this section, we will recollect some main definitions, will summarize 

the main results about Lindel¨of spaces, and present in depth several 

examples about the interrelation of some main topological notions in 

Lindel¨of spaces. We will also aim at providing detailed visualisation of 

those examples that will enable the reader to better grasp the core ideas. 

A topological space is said to be Lindel¨of, or have the Lindel¨of 

property, if every open cover of X has a countable subcover. The 

Lindel¨of property was introduced by Alexandroff and Urysohn in 1929, 

the term ‗Lindel¨of‘ referring back to Lindel¨of‘s result that any family 

of open subsets of Euclidean space has a countable sub-family with the 

same union. Clearly, a space is compact if and only if it is both Lindel¨of 

and countably compact, though weaker properties, for example 

pseudocompactness, imply compactness in the presence of the Lindel¨of 

property. The real line is a Lindel¨of space that is not compact and the 

space of all countable ordinals ω1 with the order topology is a countably 

compact space that is not Lindel¨of. It should be noted that some authors 

require the Hausdorff or regular (which we take to include T1) separation 

axioms as part of the definition of many open covering properties (c.f. 

[E]). For any unreferenced results in this article we refer the reader to 

[E].  

           There are a number of equivalent formulations of the Lindel¨of 

property: (a) the space X is Lindel¨of; (b) X is [ω1,∞]-compact (see the 

article by Vaughan in this volume); (c) every open cover has a countable 

refinement; (d) every family of closed subspaces with the countable 

intersection property1 has non-empty intersection; (e) (for regular 

spaces) every open cover of X has a countable subcover V such that {V : 

V ∈ V} covers X (where A denotes the closure of A in X). In the class of 
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locally compact spaces, a space is Lindel¨of if and only if it is ζ-compact 

(i.e., is a countable union of compact spaces) if and only if it can be 

written as an increasing union of countably many open sets each of 

which has compact closure. 

          It is an important result that regular Lindel¨of spaces are 

paracompact, from which it follows that they are (collectionwise) 

normal. Conversely, every paracompact space with a dense Lindel¨of 

subspace is Lindel¨of (in particular, every separable paracompact space 

is Lindel¨of) and every locally compact, paracompact space is a disjoint 

sum of clopen Lindel¨of subspaces. A related result is that any locally 

finite family of subsets of a Lindel¨of space is countable.  

         Closed subspaces and countable unions of Lindel¨of spaces are 

Lindel¨of. Continuous images of Lindel¨of spaces are Lindel¨of and 

inverse images of Lindel¨of spaces under perfect mappings, or even 

closed mappings with Lindel¨of fibres, are again Lindel¨of. In general, 

the Lindel¨of property is badly behaved on taking either (Tychonoff ) 

products or inverse limits.  

        The Tychonoff product of two Lindel¨of spaces need not be 

Lindel¨of or even normal, although any product of a Lindel¨of space and 

a compact space is Lindel¨of and countable products of Lindel¨of 

scattered spaces are Lindel¨of [HvM, Chapter 18, Theorem 9.33]. It is 

also true that both the class of Cech com- ˇ plete Lindel¨of and Lindel¨of 

Σ-spaces are closed under countable products. The Sorgenfrey line, 

which one obtains from the real line by declaring every interval of the 

form (a, b] to be open, is a simple example of a Lindel¨of space with 

non-normal square. Even more pathological examples are possible: 

Michael constructs a Lindel¨of space, similar to the Michael line, which 

has non-normal product with a subset of the real line and, assuming the 

Continuum Hypothesis, 

constructs a Lindel¨of space whose product with the irrationals is non-

normal. Details and further results may be found in [KV, Chapter 18] and 

Section 9 of [HvM, Chapter 18]. A space is said to be realcompact if it is 

homeomorphic to a closed subspace of the Tychonoff product R κ for 

some κ. Every regular Lindel¨of space is realcompact and, whilst the 
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inverse limit of a sequence of Lindel¨of spaces need not be normal, both 

inverse limits and arbitrary products of realcompact spaces are 

realcompact. Hence arbitrary products and inverse limits of regular 

Lindel¨of spaces are realcompact. In fact a space is realcompact if and 

only if it is the inverse limit of a family of regular Lindel¨of spaces. 

       Second countable spaces (i.e., spaces with a countable base to the 

topology) are both Lindel¨of and separable. The Sorgenfrey line is an 

example of a separable, Lindel¨of space that is not second countable. On 

the other hand, if X is metrizable (or even pseudometrizable), then X is 

second countable if and only if it is separable if and only if it has the 

countable chain condition if and only if it is Lindel¨of. By Urysohn‘s 

Metrization Theorem, a space is second countable and regular if and only 

if it is a Lindel¨of metrizable space if and only if it can be embedded as 

subspace of the Hilbert cube. 

      A space X is said to be hereditarily Lindel¨of if every subspace of X 

is Lindel¨of. Since any space can be embedded as a dense subspace of a 

(not necessarily Hausdorff) compact space, not every Lindel¨of space is 

hereditarily Lindel¨of. However, a space is hereditarily Lindel¨of if and 

only if every open subspace is Lindel¨of if and only if every uncountable 

subspace Y of X contains a point y whose every neighbourhood contains 

uncountably many points of Y . A regular Lindel¨of space is hereditarily 

Lindel¨of if and only of it is perfect and hereditarily Lindel¨of spaces 

have the countable chain condition but need not be separable. 

       In fact, for regular spaces there is a complex and subtle relationship 

between the hereditary Lindel¨of property and hereditary separability2 

(both of which follow from second countability). An hereditarily 

Lindel¨of regular space that is not (hereditarily) separable is called an L-

space; an hereditarily separable regular space that is not (hereditarily) 

Lindel¨of is called an S-space. The existence of S- and L-spaces is, to a 

certain extent, dual and depends strongly on the model of set theory. For 

example, the existence of a Souslin line implies the existence of both S- 

and L-spaces, MA + ¬CH is consistent with the existence of S- and L-

spaces but implies that neither compact S- nor compact L-spaces exist. 

However, the duality is not total: Todorˇcevi´c [11] has shown that it is 
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consistent with MA that there are no S-spaces but that there exists an L-

space, i.e., that every regular hereditarily separable space is hereditarily 

Linde¨of but that there is a non-separable, hereditarily Lindel¨of regular 

space. It is currently an open question whether it is consistent that there 

are no L-spaces. For further details about S and L see Roitman‘s article 

[KV, Chapter 7], or indeed [11]. It is fair to say that the S/L pathology, 

along with Souslin‘s Hypothesis and the Normal Moore Space 

Conjecture, has been one of the key motivating questions of set-theoretic 

topology and it crops up frequently in relation to other problems in 

general topology, such as: the metrizability of perfectly normal 

manifolds [10]; Ostaszewski‘s construction of a countably compact, 

perfectly normal noncompact space [9]; and the existence of a counter-

example to Katˇetov‘s problem ‗if X is compact and X2 is hereditarily 

normal, is X metrizable?‘ [5]. 

      The Lindel¨of degree or number, L(X), of a space X is the smallest 

infinite cardinal κ for which every open cover has a subcover of 

cardinality at most κ. The hereditary Lindel¨of degree, hL(X), of X is the 

supremum of the cardinals L(Y ) ranging over subspaces Y of X. The 

Lindel¨of degree of a space is one of a number of cardinal invariants or 

cardinal functions one might assign to a space. Cardinal functions are 

discussed in the article by Tamano in this volume, however, one result 

due to Arkhangel0 ski˘ı [1] is worth particular mention here. The 

character χ(x, X) of a point x in the space X is smallest cardinality of a 

local base at x and the character χ(X) of the space X is the supremum 

sup{χ(x, X) : x ∈ X}. A space with countable character is said to be first-

countable. Arkhangel0 ski˘ı‘s result says that the cardinality of a 

Hausdorff space X is at most 2L(X).χ(X) . In the countable case this 

theorem tells us that the cardinality of a first-countable, Lindel¨of 

Hausdorff space is at most the continuum, 2ℵ0 , and that, in particular, 

the cardinality of a firstcountable, compact Hausdorff space is at most 

the continuum.3 This impressive result solved a problem posed thirty 

years earlier by Alexandroff and Urysohn (whether a first-countable 

compact space could have cardinality greater than that of the continuum), 

but was, moreover, a model for many other results in the field. The 

theorem does not remain true if we weaken first-countability, since it is 
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consistent that the cardinality of a regular, (zero-dimensional even) 

Lindel¨of Hausdorff space with countable pseudo-character can be 

greater than that of the continuum [12], and Lindel¨of spaces can have 

arbitrary cardinality. However, de Groot has shown that the cardinality of 

a Hausdorff space X is at most 2hL(X) [KV, Chapter 1, Cor. 4.10]. For a 

much more modern proof of Arkhangel0 ski˘ı‘s theorem than the ones 

given in [1] or [KV, Chapter 1], we refer the reader to Theorem 4.1.8 of 

the article by Watson in [HvM]. 

A space is compact if and only if every infinite subset has a complete 

accumulation point if and only if every increasing open cover has a finite 

subcover and a space is countably compact if and only if every countably 

infinite subset has a complete accumulation point. However, the 

requirement that every uncountable subset has a complete accumulation 

point is implied by, but does not characterize the Lindel¨of property. 

Spaces satisfying this property are called linearly Lindel¨of, since they 

turn out to be precisely those spaces in which every open cover that is 

linearly ordered by inclusion has a countable subcover. Surprisingly little 

is known about such spaces. There are (somewhat complex) examples of 

regular linearly Lindel¨of, non-Lindel¨of spaces in ZFC, but there is, at 

present, no known example of a normal linearly Lindel¨of, non-Lindel¨of 

spaces under any set theory. Such a space would be highly pathological: 

the problem intrinsically involves singular cardinals and any example is a 

Dowker space, that is, a normal space which has non-normal product 

with the closed unit interval [0, 1]. Nevertheless one can prove some 

interesting results about linearly Lindel¨of spaces, for example every 

first-countable, linearly Lindel¨of Tychonoff space has cardinality at 

most that of the continuum, generalizing the theorem of Arhangel‘ski‘s 

result mentioned above. For more on linearly Lindel¨of spaces see the 

paper by Arkhangel0 ski˘ı and Buzyakova [2]. 

One important sub-class of Lindel¨of spaces, the Lindel¨of Σ spaces, 

deserves mention. The notion of a Σ-space was introduced by Nagami 

[8], primarily to provide a class of space in which covering properties 

behave well on taking products. It turns out that there are a number of 

characterizations of Lindel¨of Σ-spaces, two of which we mention here. 
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A Tychonoff space is Lindel¨of Σ if it is the continuous image of the pre-

image of a separable metric space under a perfect map. An equivalent 

(categorical) definition is that the class of Lindel¨of Σ-spaces is the 

smallest class containing all compact spaces and all separable metrizable 

spaces that is closed under countable products, closed subspaces and 

continuous images. So, as mentioned above, countable products of 

Lindel¨of Σspaces are Lindel¨of Σ. Every ζ-compact space, and hence 

every locally compact Lindel¨of space, is a Lindel¨of Σ-space. Lindel¨of 

Σ-spaces play an important rˆole in the study of function spaces (with the 

topology of pointwise convergence). For details, see the article on Cp-

theory by Arkhangel0 ski˘ı [HvM, Chapter 1]. 

       There are several strengthenings and weakenings of the Lindel¨of 

property in the literature for example: almost Lindel¨of, n-starLindel¨of, 

totally Lindel¨of, strongly Lindel¨of, Hurewicz, subbase Lindel¨of. We 

mention one in passing. A space is weakly Lindel¨of if any open cover 

has a countable subfamily V such that S {V : V ∈ V} is dense in X. 

Weakly Lindel¨of spaces are of some interest in Banach space theory 

[HvM, Chapter 16] and, assuming CH, the weakly Lindel¨of subspaces 

of βN are precisely those which are C ∗ -embedded into βN (1.5.3 of 

[KV, Chapter 11]). Covering properties such as para- or metaLindel¨of 

belong more properly to a discussion of generalizations of 

paracompactness. 

       Finally, we list a number of interesting results concerning the Axiom 

of Choice and the Lindel¨of property. The Countable Axiom of Choice is 

strictly stronger than either of the statements ‗Lindel¨of metric spaces are 

second countable‘ or ‗Lindel¨of metric spaces are separable‘ [7]. In 

Zermelo-Fraenkel set theory (without choice) the following conditions 

are equivalent: (a) N is Lindel¨of; (b) R is Lindel¨of; (c) every second 

countable space is Lindel¨of; (d) R is hereditarily separable; (e) f : R → 

R is continuous at x iff it is sequentially continuous at x; and (f) the 

axiom of countable choice holds for subsets of R [6]. There are models 

of ZF in which every Lindel¨of T1-space is compact [3] and models in 

which the space ω1 is Lindel¨of but not countably compact [4]. 

Theorem Let X be a metric space. Then the following are equivalent: 
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 1. X is Lindel¨of,  

2. X is hereditarily Lindel¨of,  

3. X is second countable,  

4. X is separable, 

5. X satisfies the countable chain condition. The following example 

shows that in general, separability does not follow from being CCC and 

Lindel¨of. 

Claim. X is Lindel¨of. 

Proof. We will use the fact that X is Lindel¨of iff from any cover with 

basic open sets we can find a countable subcover. Let γ = {O(ak, bk, αk) 

: k ∈ K, αk < ω1} be an open cover of X with basic open sets. Let us note 

that α = 0 must be among those {αk : αk < ω1}, otherwise points from X 

∩ (R × {0}) will not be covered. Let A = S α∈ω1 Qα; note that A is 

uncountable. Then A ⊂ R and since R is metric with a countable base, so 

is A; hence, A is Lindel¨of. Then U = {(ak, bk) ∩ A : k ∈ K} is an open 

cover of A in the Euclidean topology and we can choose a countable 

subcover which we shall denote by Υ = {(an, bn)∩A : n ∈ N}. Then {αn 

: n ∈ N} is a countable set of countable ordinals, hence α0 = sup{αn : n ∈ 

N} is at most countable. Let us show that {O(an, bn, αn) : n ∈ N} covers 

all but countably many elements of X. 

Check In Progress 

Q 1. Give Introduction of The Lindel¨of Property. 

Solution 

……………………………………………………………………………

…….………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………… 

Q 2. Let X be a metric space. Then the following are equivalent: 
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 1. X is Lindel¨of,  

Solution 

……………………………………………………………………………

…….………………………………………………………………………

…………………….………………………………………………………

……………………………………………………………………………

…………………………………………………… 

 

12.4 DIFFERENT FORMS OF 

COMPACTNESS AND THEIR RELATION 
 

Given a topological space X one can define several notion of 

compactness: 

X is compact if every open cover has a finite subcover. 

X is sequentially compact if every sequence has a convergent 

subsequence. 

X is limit point compact (or Bolzano-Weierstrass) if every infinite set 

has an accumulation point. 

X is countably compact if every countable open cover has a finite 

subcover. 

X is σ-compact if it is the union of countably many compact subspaces. 

X is pseudocompact if its if its image under any continuous function 

to RR is bounded. 

X is paracompact if every open cover admits an open locally finite 

refinement (i.e. every point of X has a neighborhood small enough to 

intersect only finitely many members of the cover). 

X is metacompact if every open cover admits a point finite open 

refinement (i.e. if every point of X is in only finitely many members of 

the refinement). 

X is orthocompact if every open cover has an interior preserving open 

refinement (i.e. given an open cover there is a open subcover such that at 

https://mathoverflow.net/questions/37195/different-forms-of-compactness-and-their-relation
https://mathoverflow.net/questions/37195/different-forms-of-compactness-and-their-relation
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any point, the intersection of all open sets in the subcover containing that 

point is also open). 

X is mesocompact if every open cover has a compact-finite open 

refinement (i.e. given any open cover, we can find an open refinement 

such that every compact set is contained in finitely many members of the 

refinement). 

So, there are quite a few notions of compactness (there are surely more 

than those I quoted up here). The question is: where are these definitions 

systematically studied? What I'm interested in particular is knowing 

when does one imply the other, when does it not (examples), &c. 

I can fully answer the question for the first three notions: 

Compact and first-countable --> Sequentially compact. 

Sequentially compact and second-countable --> Compact. 

Sequentially compact --> Limit-point compact. 

Limit point compact, first-countable and T1 --> Sequentially compact. 

but I'm absolutely ignorant about the other cases. Has this been 

systematically studied somewhere? If so, where? 

Example : Let N be the set of all natural numbers, and let ηI is indiscrete 

topology on N.  N} is b-open cover (respectively, gopen cover, bg-open 

cover) of N which has no finite subcover.Evidently, N is compact 

space. However, it is not b-compact (respectively, not gcompact, not bg-

compact) space, since {{n}: n 

Example  Let H and X-H is finite} be a X: 0 {H {0} with η= 

₱(N): Let X= N topological space, where ₱(N) is the power set of the 

natural numbers.  A.Then, any g-open cover of X must contains a g-

open set A, such that 0 Implies, X-A is finite. Hence, X is g-compact 

space. But X is neither b-compact space nor bg-compact. Since, (E  

O{{n}: n {0})+ + } is b-open cover, also bgopen cover, of X which 

has no finite subcover. 

Proposition : A bg-closed subset of a bg-compact space is bg-compact 

relative to X. I} be a:  
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Proof: Let A be a bg-closed subset of a bg-compact space X. Let {G  (X-

A) is bg-open cover of X.I}: cover of A by bg-open sets in X. 

Then С= {G 1Since X is bg-compact space, С is reducible to a finite 

subcover of X, and X= G n. Therefore A is bgcompact relative to X. 

G… 2 G1 G (X-A). Hence, An G… 2G Thus every 

bg-closed subset of a bg-compact space is bg-compact. 

Y is said to be bg-continuous (respectively, 

Definition : [3] A function ƒ: X bg-irresolute) if ƒ-1 (V) is bg-closed in 

X for every closed (respectively, bg-closed) set V of Y. Y is said to be 

bg-continuous (respectively, bgirresolute) if ƒ-1 

Proposition : A function ƒ: X (V) is bg-open in X for every open 

(respectively, bg-open) set V of Y. P 

Proposition: A bg-continuous image of a bg-compact space is compact. 

Y is a bg-continuous function from a bg-compact space X onto aProof: 

Let ƒ: X I} be an open cover of Y. Then {ƒ: space Y. Let {A -1 I} is 

a bg-open): (A cover of X. Since X is bg-compact, it has a finite 

subcover say {ƒ-1 i): i= 1, 2, …,(A i: i= 1, 2, …, n} is a cover of Y, 

which is finite. Therefore Yn}. Since ƒ is onto, {A is compact 

Lemma : The continuous and open mapping from a space X into a space 

Y is bg-irresolute.  (Y, ζ) be a continuous and open function, let V be a 

bg-openProof: Let ƒ: (X, η)  subset of Y. Let F be a closed subset of ƒ-

1 (V) in X. Implies, ƒ(F) is closed subset of  ƒ(ƒ-1Y, and ƒ(F)  ζ-

Intb(V), so ƒ-1(V))= V. Then ƒ(F)  ƒ(ƒ(F)) -1 (ζ-Intb(V)).  η-Intb(ƒ-

1Therefore F (V)). Hence, ƒ -1 (V) is bg-open subset of X. Thus ƒ is 

bgirresolute. 

Proposition : For a space X, the following statements are equivalent.  

1. X is bg-compact. 

 2. Any family of bg-closed subsets of X satisfying the finite intersection 

property has a non-empty intersection.  
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3. Any family of bg-closed subsets of X with empty intersection has a 

finite subfamily with empty intersection.  

Proof: 1 2:  I} be a family of bg-closed subsets of XLet X be a bg-

compact space and {Fi: i . I} ≠which satisfying the finite intersection 

property. To prove that ∩ {Fi: i  I} I}, so {X-Fi: i {X-Fi: i. Then 

X=  I} =Suppose the inverse, i.e., ∩ {Fi: i is bg-open cover of X 

which is bg-compact space. Implies, there exists a finite subset , which is 

a contradiction. I} = I0} and so ∩ {Fi: i {X-Fi: iI0 of I such that 

X=  . I} ≠Thus, ∩ {Fi: i 

2 1: Suppose 2 hold and X is not bg-compact space, then there exists a 

bg-open cover I} of X has no finite subcover. Thus, for any finite subset 

I0 of I, we have X≠{Vi: i  I} satisfies. Therefore the family {(X-Vi): 

i I0} ≠ I0}. So, ∩{(X-Vi): i {Vi: i the finite intersection property, 

then it has a non-empty intersection, i.e., ∩{(X-Vi):  I}, which is a 

contradiction. Hence, X is bg-compact {Vi: i. Implies, X≠  I} ≠i 

space. 

 2 3: Obvious. The notions of a filter and a net play an important role in 

all compact spaces. Therefore, we introduce the following notions which 

will be used in this paper to give some characterizations of bg-compact 

spaces in terms nets and filter bases. 

Definition: Let A be a subset of a space X. A point x . The setpoint of 

A if for each bg-open set U containing x, we have (U- {x}) ∩ A ≠ of all 

bg-limit points of A is called a bg-derived set of A and denoted by 

Dbg(A). I} is bg-accumulates at a:  

Definition: Let I be a directed set. A net θ ={x  I, there0point x of a 

space X if for each U bg-open set containing x and for each   U.0 

such that x  is some The net θ is bg-converges to a point x of X if for 

each U bg-open set containing x, 0.   U for all  I such that 

x0there is. 

Definition 4 (Limit point Compact) K ⊆ X is limit point compact if 

every infinite subset of it has a limit point.  
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Recall that x ∈ X is a limit point of the set K if every neighbourhood of x 

intersects K − {x}. For a net {xλ}λ∈Λ we define x as its cluster point4 if 

for every neighbourhood O of x, the index set {λ : xλ ∈ O} is cofinal in 

Λ. It can be shown that x is a cluster point of the net {xλ}λ∈Λ iff some 

subnet {xλγ }γ∈Γ converges to x. Similarly x is a limit point of the set K 

iff there exists some net x 6∈ {xλ}λ∈Λ ⊆ K that converges to x. We will 

also need the notion of ω-limit point. A point x ∈ X is an ω-limit point of 

the set K if every neighbourhood of x intersects K at infinitely many 

points5 . Apparently ω-limit point is bona fide a limit point while the 

converse is true only in T1 space. Note that there is no need to define ω-

cluster point (it coincides with cluster point). 

Theorem 1 K ⊆ X is countably compact iff every infinite subset of it has 

an ω-limit point iff every sequence in it has a cluster point. 

Proof: Suppose every sequence has a cluster point and let A be an 

infinite set, then we can find a sequence (with distinct elemets) in A 

whose cluster point clearly is an ω-limit point of A. On the other hand, 

suppose every infinite subset has an ω-limit point. Consider any 

sequence {xn}, let its distinct elements be {xnm}, which we assume is an 

infinite set (otherwise we are done). Apparently any ω-limit point of 

{xnm} is a cluster point of {xn}. 

          Suppose X is countably compact, let {xn} be a sequence in X . 

Denote Bn := cl({xi}∞ i=n ), hence ∃x ∈ ∩∞ n=1Bn. Any 

neighbourhood O 3 x must intersect infinitely many elements of the 

sequence {xn} (again we omit the uninteresting case where the sequence 

only has finitely many distinct elements) since otherwise it would imply 

that ∩∞ n=1Bn = ∅. We have used the fact that for any open set O, O∩A 

= ∅ ⇐⇒ O∩cl(A) = ∅. On the other hand, suppose every sequence has a 

cluster point, and let Bn be a sequence of closed sets that satisfy the 

finite intersection property. We can choose xn ∈ B1 ∩ . . . ∩ Bn. Any 

cluster point of {xn}, say x, must belong to ∩∞ n=1Bn. 

12.5 SUMMARY 
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We study in this unit compact space and its properties with examples. 

We study Countably in this unit. We study different types of 

compactness and its properties with examples.  

 

12.6 KEYWORD 
 

COMPACT : Exert force on (something) so that it becomes more dense; 

compress 

COUNTABLY : Capable of being 

counted: countable items; countable sins 

ORTHOCOMPACT : Orthocompact; this shows that orthocompactness 

is preserved by closed maps i 

 

12.7 QUESTIONS FOR REVIEW  

 

1 A closed sub-space of a Lindelof space is Lindelof. 

2 Every second countable space is a Lindelof space. 

3 Any uncountable discrete topological space is not Lindel¨of. 

4. The space [0, ω1), with the order topology, is not Lindel¨of. 

5. A space X is Lindel¨of if and only if every family of closed nonempty 

subsets of X which has the countable intersection property has a non-

empty intersection. 
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12.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 1 

              Q 2 Check in Section 2 

Check in Progress-II 

Answer  Q. 1 Check in Section 4 

              Q 2 Check in Section 4 
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UNIT 13: DIFFERENT KIND OF 

COMPACTNESS 
 

STRUCTURE 

13.0  Objective 

13.1 Introduction Local Compactness 

13.1.1 Historical Development 

13.1.2 Basic Example 

13.1.3 Definition 

13.1.4 Open Cover 

13.1.5 Properties Of Compact Space 

13.1.6 Example 

13.1.7 Algebraic Example 

13.2 Locally Compact Space 

13.3 Compactification 

13.4 Stone–Čech Compactification 

13.4.1 Spacetime Compactification 

13.4.2 Projective Space 

      13.5 Paracompactness 

      13.6 Summary 

 13.7 Keyword 

13.8 Questions for review  

13.9 Suggestion Reading And References 

13.10 Answer to check your progress 

13.0 OBJECTIVE 
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 After going through this unit, you will be able to: 

  Discuss compact set in the real line, sequentially and countably 

compact sets 

 Describe Bolzano-Weierstrass property and sequential 

compactness, 

 completeness and finite intersection property 

             Explain continuous functions and compact sets, characterisation 

of continuous 

functions 

 Interpret limit point compactness and local compactness 

 

13.1 INTRODUCTION  

Local Compactness 

In mathematics, and more specifically in general 

topology, compactness is a property that generalizes the notion of a 

subset of Euclidean space being closed (that is, containing all its limit 

points) and bounded (that is, having all its points lie within some fixed 

distance of each other). Examples include a closed interval, a rectangle, 

or a finite set of points. This notion is defined for more 

general topological spaces than Euclidean space in various ways. 

One such generalization is that a topological space 

is sequentially compact if every infinite sequence of points sampled from 

the space has an infinite subsequence that converges to some point of the 

space. The Bolzano–Weierstrass theorem states that a subset of 

Euclidean space is compact in this sequential sense if and only if it is 

closed and bounded. Thus, if one chooses an infinite number of points in 

the closed unit interval [0, 1] some of those points will get arbitrarily 

close to some real number in that space. For instance, some of the 

numbers 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, … accumulate to 0 (others 

accumulate to 1). The same set of points would not accumulate to any 

point of the open unit interval (0, 1); so the open unit interval is not 

compact. Euclidean space itself is not compact since it is not bounded. In 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/General_topology
https://en.wikipedia.org/wiki/General_topology
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Bounded_set
https://en.wikipedia.org/wiki/Closed_interval
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Sequentially_compact
https://en.wikipedia.org/wiki/Infinite_sequence
https://en.wikipedia.org/wiki/Subsequence
https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem
https://en.wikipedia.org/wiki/Unit_interval


Notes 

125 

particular, the sequence of points 0, 1, 2, 3, … has no subsequence that 

converges to any real number. 

Apart from closed and bounded subsets of Euclidean space, typical 

examples of compact spaces include spaces consisting not of geometrical 

points but of functions. The term compact was introduced into 

mathematics by Maurice Fréchet in 1904 as a distillation of this concept. 

Compactness in this more general situation plays an extremely important 

role in mathematical analysis, because many classical and important 

theorems of 19th-century analysis, such as the extreme value theorem, 

are easily generalized to this situation. A typical application is furnished 

by the Arzelà–Ascoli theorem or the Peano existence theorem, in which 

one is able to conclude the existence of a function with some required 

properties as a limiting case of some more elementary construction. 

Various equivalent notions of compactness, including sequential 

compactness and limit point compactness, can be developed in 

general metric spaces. In general topological spaces, however, different 

notions of compactness are not necessarily equivalent. The most useful 

notion, which is the standard definition of the unqualified 

term compactness, is phrased in terms of the existence of finite families 

of open sets that "cover" the space in the sense that each point of the 

space lies in some set contained in the family. This more subtle notion, 

introduced by Pavel Alexandrov and Pavel Urysohn in 1929, exhibits 

compact spaces as generalizations of finite sets. In spaces that are 

compact in this sense, it is often possible to patch together information 

that holds locally—that is, in a neighborhood of each point—into 

corresponding statements that hold throughout the space, and 

many theorems are of this character. 

The term compact set is sometimes a synonym for compact space, but 

usually refers to a compact subspace of a topological space. 

 

13.1.1 Historical development 

In the 19th century, several disparate mathematical properties were 

understood that would later be seen as consequences of compactness. On 

the one hand, Bernard Bolzano (1817) had been aware that any bounded 

https://en.wikipedia.org/wiki/Function_space
https://en.wikipedia.org/wiki/Maurice_Fr%C3%A9chet
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Extreme_value_theorem
https://en.wikipedia.org/wiki/Arzel%C3%A0%E2%80%93Ascoli_theorem
https://en.wikipedia.org/wiki/Peano_existence_theorem
https://en.wikipedia.org/wiki/Sequentially_compact_space
https://en.wikipedia.org/wiki/Sequentially_compact_space
https://en.wikipedia.org/wiki/Limit_point_compact
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Cover_(topology)
https://en.wikipedia.org/wiki/Pavel_Alexandrov
https://en.wikipedia.org/wiki/Pavel_Urysohn
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Local_property
https://en.wikipedia.org/wiki/Compact_space#Theorems
https://en.wikipedia.org/wiki/Compact_space#Compactness_of_subsets
https://en.wikipedia.org/wiki/Bernard_Bolzano
https://en.wikipedia.org/wiki/Compact_space#CITEREFBolzano1817
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sequence of points (in the line or plane, for instance) has a subsequence 

that must eventually get arbitrarily close to some other point, called 

a limit point. Bolzano's proof relied on the method of bisection: the 

sequence was placed into an interval that was then divided into two equal 

parts, and a part containing infinitely many terms of the sequence was 

selected. The process could then be repeated by dividing the resulting 

smaller interval into smaller and smaller parts until it closes down on the 

desired limit point. The full significance of Bolzano's theorem, and its 

method of proof, would not emerge until almost 50 years later when it 

was rediscovered by Karl Weierstrass.
[1]

 

In the 1880s, it became clear that results similar to the Bolzano–

Weierstrass theorem could be formulated for spaces of functions rather 

than just numbers or geometrical points. The idea of regarding functions 

as themselves points of a generalized space dates back to the 

investigations of Giulio Ascoli and Cesare Arzelà.
[2]

 The culmination of 

their investigations, the Arzelà–Ascoli theorem, was a generalization of 

the Bolzano–Weierstrass theorem to families of continuous functions, the 

precise conclusion of which was that it was possible to extract 

a uniformly convergent sequence of functions from a suitable family of 

functions. The uniform limit of this sequence then played precisely the 

same role as Bolzano's "limit point". Towards the beginning of the 

twentieth century, results similar to that of Arzelà and Ascoli began to 

accumulate in the area of integral equations, as investigated by David 

Hilbert and Erhard Schmidt. For a certain class of Green's 

functions coming from solutions of integral equations, Schmidt had 

shown that a property analogous to the Arzelà–Ascoli theorem held in 

the sense of mean convergence—or convergence in what would later be 

dubbed a Hilbert space. This ultimately led to the notion of a compact 

operator as an offshoot of the general notion of a compact space. It 

was Maurice Fréchet who, in 1906, had distilled the essence of the 

Bolzano–Weierstrass property and coined the term compactness to refer 

to this general phenomenon (he used the term already in his 1904 

paper
[3]

 which led to the famous 1906 thesis). 

However, a different notion of compactness altogether had also slowly 

emerged at the end of the 19th century from the study of the continuum, 
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which was seen as fundamental for the rigorous formulation of analysis. 

In 1870, Eduard Heine showed that a continuous function defined on a 

closed and bounded interval was in fact uniformly continuous. In the 

course of the proof, he made use of a lemma that from any countable 

cover of the interval by smaller open intervals, it was possible to select a 

finite number of these that also covered it. The significance of this 

lemma was recognized by Émile Borel (1895), and it was generalized to 

arbitrary collections of intervals by Pierre Cousin (1895) and Henri 

Lebesgue (1904). The Heine–Borel theorem, as the result is now known, 

is another special property possessed by closed and bounded sets of real 

numbers. 

This property was significant because it allowed for the passage 

from local information about a set (such as the continuity of a function) 

to global information about the set (such as the uniform continuity of a 

function). This sentiment was expressed by Lebesgue (1904), who also 

exploited it in the development of the integral now bearing his name. 

Ultimately the Russian school of point-set topology, under the direction 

of Pavel Alexandrov and Pavel Urysohn, formulated Heine–Borel 

compactness in a way that could be applied to the modern notion of 

a topological space. Alexandrov & Urysohn (1929) showed that the 

earlier version of compactness due to Fréchet, now called 

(relative) sequential compactness, under appropriate conditions followed 

from the version of compactness that was formulated in terms of the 

existence of finite subcovers. It was this notion of compactness that 

became the dominant one, because it was not only a stronger property, 

but it could be formulated in a more general setting with a minimum of 

additional technical machinery, as it relied only on the structure of the 

open sets in a space. 

 

13.1.2 Basic Examples 

Any finite space is trivially compact. A non-trivial example of a compact 

space is the (closed) unit interval [0,1] of real numbers. If one chooses an 

infinite number of distinct points in the unit interval, then there must be 

some accumulation point in that interval. For instance, the odd-numbered 
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terms of the sequence 1, 1/2, 1/3, 3/4, 1/5, 5/6, 1/7, 7/8, ... get arbitrarily 

close to 0, while the even-numbered ones get arbitrarily close to 1. The 

given example sequence shows the importance of including 

the boundary points of the interval, since the limit points must be in the 

space itself — an open (or half-open) interval of the real numbers is not 

compact. It is also crucial that the interval be bounded, since in the 

interval [0,∞) one could choose the sequence of points 0, 1, 2, 3, ..., of 

which no sub-sequence ultimately gets arbitrarily close to any given real 

number. 

In two dimensions, closed disks are compact since for any infinite 

number of points sampled from a disk, some subset of those points must 

get arbitrarily close either to a point within the disc, or to a point on the 

boundary. However, an open disk is not compact, because a sequence of 

points can tend to the boundary without getting arbitrarily close to any 

point in the interior. Likewise, spheres are compact, but a sphere missing 

a point is not since a sequence of points can tend to the missing point, 

thereby not getting arbitrarily close to any point within the space. Lines 

and planes are not compact, since one can take a set of equally-spaced 

points in any given direction without approaching any point. 

 

13.1.3 Definitions 

Various definitions of compactness may apply, depending on the level of 

generality. A subset of Euclidean space in particular is called compact if 

it is closed and bounded. This implies, by the Bolzano–Weierstrass 

theorem, that any infinite sequence from the set has a subsequence that 

converges to a point in the set. Various equivalent notions of 

compactness, such as sequential compactness and limit point 

compactness, can be developed in general metric spaces. 

In general topological spaces, however, the different notions of 

compactness are not equivalent, and the most useful notion of 

compactness—originally called bicompactness—is defined 

using covers consisting of open sets (see Open cover definition below). 

That this form of compactness holds for closed and bounded subsets of 

Euclidean space is known as the Heine–Borel theorem. Compactness, 
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when defined in this manner, often allows one to take information that is 

known locally—in a neighbourhood of each point of the space—and to 

extend it to information that holds globally throughout the space. An 

example of this phenomenon is Dirichlet's theorem, to which it was 

originally applied by Heine, that a continuous function on a compact 

interval is uniformly continuous; here, continuity is a local property of 

the function, and uniform continuity the corresponding global property. 

13.1.4 Open cover  

Definition 

Formally, a topological space X is called compact if each of its open 

covers has a finite subcover. That is, X is compact if for every 

collection C of open subsets of X such that there is 

a finite subset F of C such that Some branches of mathematics such 

as algebraic geometry, typically influenced by the French school 

of Bourbaki, use the term quasi-compact for the general notion, and 

reserve the term compact for topological spaces that are 

both Hausdorff and quasi-compact. A compact set is sometimes referred 

to as a compactum, plural compacta. 

 

13.1.5 Properties of Compact Spaces 

Functions and Compact Spaces 

A continuous image of a compact space is compact. This implies 

the extreme value theorem: a continuous real-valued function on a 

nonempty compact space is bounded above and attains its 

supremum (Slightly more generally, this is true for an upper 

semicontinuous function.) As a sort of converse to the above statements, 

the pre-image of a compact space under a proper map is compact. 

Compact Spaces and Set Operations 

A closed subset of a compact space is compact, and a finite union of 

compact sets is compact. 

The product of any collection of compact spaces is compact. (This 

is Tychonoff's theorem, which is equivalent to the axiom of choice.) 
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Every topological space X is an open dense subspace of a compact space 

having at most one point more than X, by the Alexandroff one-point 

compactification. By the same construction, every locally 

compact Hausdorff space X is an open dense subspace of a compact 

Hausdorff space having at most one point more than X. 

Ordered compact Spaces 

A nonempty compact subset of the real numbers has a greatest element 

and a least element. 

Let X be a simply ordered set endowed with the order topology. 

Then X is compact if and only if X is a complete lattice (i.e. all subsets 

have suprema and infima). 

13.1.6 Examples 

 Any finite topological space, including the empty set, is compact. 

More generally, any space with a finite topology (only finitely many 

open sets) is compact; this includes in particular the trivial topology. 

 Any space carrying the cofinite topology is compact. 

 Any locally compact Hausdorff space can be turned into a 

compact space by adding a single point to it, by means 

of Alexandroff one-point compactification. The one-point 

compactification of R is homeomorphic to the circle S
1
; the one-

point compactification of R
2
 is homeomorphic to the sphere S

2
. 

Using the one-point compactification, one can also easily construct 

compact spaces which are not Hausdorff, by starting with a non-

Hausdorff space. 

 The right order topology or left order topology on any 

bounded totally ordered set is compact. In particular, Sierpiński 

space is compact. 

 No discrete space with an infinite number of points is compact. 

The collection of all singletons of the space is an open cover which 

admits no finite subcover. Finite discrete spaces are compact. 

 In R carrying the lower limit topology, no uncountable set is 

compact. 
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 In the cocountable topology on an uncountable set, no infinite set 

is compact. Like the previous example, the space as a whole is 

not locally compact but is still Lindelöf. 

 The closed unit interval [0,1] is compact. This follows from 

the Heine–Borel theorem. The open interval (0,1) is not compact: 

the open cover  for n = 3, 4, …  does not have a finite subcover. 

Similarly, the set of rational numbers in the closed interval [0,1] is 

not compact: the sets of rational numbers in the intervals  cover all 

the rationals in [0, 1] for n = 4, 5, ...  but this cover does not have a 

finite subcover. Here, the sets are open in the subspace topology even 

though they are not open as subsets of R. 

 The set R of all real numbers is not compact as there is a cover of 

open intervals that does not have a finite subcover. For example, 

intervals (n−1, n+1) , where n takes all integer values in Z, 

cover R but there is no finite subcover. 

 On the other hand, the extended real number line carrying the 

analogous topology is compact; note that the cover described above 

would never reach the points at infinity. In fact, the set has 

the homeomorphism to [-1,1] of mapping each infinity to its 

corresponding unit and every real number to its sign multiplied by 

the unique number in the positive part of interval that results in its 

absolute value when divided by one minus itself, and since 

homeomorphisms preserve covers, the Heine-Borel property can be 

inferred. 

 For every natural number n, the n-sphere is compact. Again from 

the Heine–Borel theorem, the closed unit ball of any finite-

dimensional normed vector space is compact. This is not true for 

infinite dimensions; in fact, a normed vector space is finite-

dimensional if and only if its closed unit ball is compact. 

 On the other hand, the closed unit ball of the dual of a normed 

space is compact for the weak-* topology. (Alaoglu's theorem) 

 The Cantor set is compact. In fact, every compact metric space is 

a continuous image of the Cantor set. 

 Consider the set K of all functions f : R → [0,1] from the real 

number line to the closed unit interval, and define a topology on K so 
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that a sequence  in K converges towards  if and only if  converges 

towards f(x) for all real numbers x. There is only one such topology; 

it is called the topology of pointwise convergence or the product 

topology. Then K is a compact topological space; this follows from 

the Tychonoff theorem. 

 Consider the set K of all functions f : [0,1] → [0,1] satisfying 

the Lipschitz condition |f(x) − f(y)| ≤ |x − y| for all x, y ∈ [0,1]. 

Consider on K  the metric induced by the uniform distance  Then 

by Arzelà–Ascoli theorem the space K is compact. 

 The spectrum of any bounded linear operator on a Banach 

space is a nonempty compact subset of the complex numbers C. 

Conversely, any compact subset of C arises in this manner, as the 

spectrum of some bounded linear operator. For instance, a diagonal 

operator on the Hilbert space  may have any compact nonempty 

subset of C as spectrum. 

13.1.7 Algebraic Examples 

 Compact groups such as an orthogonal group are compact, while 

groups such as a general linear group are not. 

 Since the p-adic integers are homeomorphic to the Cantor set, they 

form a compact set. 

 The spectrum of any commutative ring with the Zariski 

topology (that is, the set of all prime ideals) is compact, but 

never Hausdorff (except in trivial cases). In algebraic geometry, such 

topological spaces are examples of quasi-compact schemes, "quasi" 

referring to the non-Hausdorff nature of the topology. 

 The spectrum of a Boolean algebra is compact, a fact which is part of 

the Stone representation theorem. Stone spaces, compact totally 

disconnected Hausdorff spaces, form the abstract framework in 

which these spectra are studied. Such spaces are also useful in the 

study of profinite groups. 

 The structure space of a commutative unital Banach algebra is a 

compact Hausdorff space. 

 The Hilbert cube is compact, again a consequence of Tychonoff's 

theorem. 
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 A profinite group (e.g., Galois group) is compact. 

 

Check In Progress-I 

Q 1. Give Definition of open Cover. 

Solution 

……………………………………………………………………………

…………………….………………………………………………………

…………………………………………………………………………… 

Q 2. Define Local Compactness. 

Solution 

……………………………………………………………………………

…….………………………………………………………………………

…………………….……………………………………………………… 

13.2 LOCALLY COMPACT SPACE 
 

Compact spaces (especially compact Hausdorff spaces) are extremely 

―nice‖ - as we have already studied (optimization problems have 

solutions; continuous functions are uniformly continuous; integrals 

exist). There is a more general class of spaces that are important (for 

example, they include R n ) and that arise a lot in analysis (see, for 

example, the ―Riesz representation theorem‖). These spaces are too big 

to be compact, but they are compact when looked at from close-up. More 

precisely,...  

Definition. A space X is locally compact if for each x ∈ X, there exists 

an open neighborhood U of x with closure U¯ compact. 

When X is also Hausdorff, the property of local compactness becomes 

much stronger. Let‘s state this as a theorem. 
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Theorem 1. If X is locally compact and Hausdorff, x ∈ X, and U is any 

neighborhood of x, then there exists a neighborhood V of x such that the 

closure V¯ is compact and V¯ ⊆ U. 

Remark. So not only does x have some neighborhood with compact 

closure, it has many; in fact, it has arbitrarily small neighborhoods with 

compact closure. 

The text proves this theorem by first embedding X in its ―one-point 

compactificaton‖. Instead, let‘s prove the theorem more directly, and 

then use this tool to help understand the one-point compactification 

space. Ultimately, we are all doing the same ―dirty work‖, just changing 

the order in which we encounter various issues. (And I think the 

approach in these notes makes the issues clearer.) 

Lemma 1.1. If X is Hausdorff, x ∈ X, and C is a compact subset of X 

with x /∈ C, then there exist disjoint neighborhoods U(x) and V (C). 

Proof. This is stated as  in the text. The technique for this proof is 

something you should know well, useful for other theorems, so here is 

the proof. 

Since X is Hausdorff, for each point y ∈ C, there are disjoint 

neighborhoods of x and y; let‘s call these Uy(x) and Vy(y). The set C is 

covered by {Vy : y ∈ C} and, since C is compact, there is a finite 

subcover {Vy1, . . ., Vyn}. So U = Uy1 ∩ . . . ∩ Uyn and V = Vy1 ∪ . . . 

∪ Vyn are disjoint neighborhoods of x and C respectively 

Lemma 1.2. In a Hausdorff space X, suppose U is a neighborhood of a 

point x and bd U is compact. Then there exists a neighborhood V of x 

such that the closure V¯ ⊆ U 

Proof. By assumption, bd U is compact. Then, by Lemma (1.1), there 

exist disjoint neighborhoods W of x and W′ of bd U. Note this implies 

that the closure W¯ is disjoint from bdU. Let V = U ∩ W.  

Then V¯ ⊆ U¯ ∩ W¯ = (U ∪ bd U) ∩ W¯ = (U ∩ W¯ ) ∪ (bd U ∩ W¯ ) 

= (U ∩ W¯ ) ∪ ∅ ⊆ U . 
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Remark. The idea in the preceding lemma is that if we can separate x 

from the boundary of a neighborhood U(x) then we can shrink U to a 

neighborhood that is ―deep‖ within U, that is the closure of the new 

neighborhood is contained in U. 

Proof of Theorem 1. We have x ∈ U, where U is a given neighborhood of 

x. By definition of local compactness, there exists a[nother] 

neighborhood W of x such that the closure W¯ is compact. This makes 

any closed set contained in W¯ also compact 

Consider the set V1 = U ∩ W. We might hope that V1 is the desired 

neighborhood of x; it certainly is contained in U. But its closure is, in 

general, not contained in U,. So we have to ―trim it down‖ a little. 

The set bd V1 is closed and contained in V¯ 1 ⊆ W¯ which is compact, 

so bd V1 is compact. By Lemma 1.2, there exists a neighborhood V (x) 

such that the closure V¯ ⊆ V1; but since V1 = U ∩ W, this says V¯ ⊆ U. 

Remark (for the future). Along with finding neighborhoods of a point 

that lie deep within a given one, we also can use the same kind of 

thinking (separate points from compact sets, or separate compact sets 

from each other) to get large families of nested neighborhoods. In fact, 

we can construct inductively a countable family of neighborhoods of x 

inside a given U where the countable family is indexed by rationals of 

the form j 2n for all positive integers j and n, such that the containment 

relations between the neighborhoods is the same as for the intervals [0, j 

2n ]. This ultimately lets us construct continuous functions from X to R 

that ―separate points‖ or ―separate points from closed sets‖. In a [locally] 

compact Hausdorff space, given two points A, B or a point A and a 

closed set B missing A, there exists a continuous function f : X → R such 

that f(x) = 0 and f(a) = 1 for all a ∈ A. This property is sometimes called 

completely regular. We‘ll see more theorems like this in later sections. 

 

13.3 COMPACTIFICATION  
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In mathematics, in general topology, compactification is the process or 

result of making a topological space into a compact space. A compact 

space is a space in which every open cover of the space contains a finite 

subcover. The methods of compactification are various, but each is a way 

of controlling points from "going off to infinity" by in some way adding 

"points at infinity" or preventing such an "escape". 

An Example 

Consider the real line with its ordinary topology. This space is not 

compact; in a sense, points can go off to infinity to the left or to the right. 

It is possible to turn the real line into a compact space by adding a single 

"point at infinity" which we will denote by ∞. The resulting 

compactification can be thought of as a circle (which is compact as a 

closed and bounded subset of the Euclidean plane). Every sequence that 

ran off to infinity in the real line will then converge to ∞ in this 

compactification. 

Intuitively, the process can be pictured as follows: first shrink the real 

line to the open interval (-π,π) on the x-axis; then bend the ends of this 

interval upwards (in positive y-direction) and move them towards each 

other, until you get a circle with one point (the topmost one) missing. 

This point is our new point ∞ "at infinity"; adding it in completes the 

compact circle. 

A bit more formally: we represent a point on the unit circle by its angle, 

in radians, going from -π to π for simplicity. Identify each such point θ 

on the circle with the corresponding point on the real line tan(θ/2). This 

function is undefined at the point π, since tan(π/2) is undefined; we will 

identify this point with our point ∞. 

Since tangents and inverse tangents are both continuous, our 

identification function is a homeomorphism between the real line and the 

unit circle without ∞. What we have constructed is called the Alexandroff 

one-point compactification of the real line, discussed in more generality 

below. It is also possible to compactify the real line by 

adding two points, +∞ and -∞; this results in the extended real line. 
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Definition 

An embedding of a topological space X as a dense subset of a compact 

space is called a compactification of X. It is often useful to 

embed topological spaces in compact spaces, because of the special 

properties compact spaces have. 

Embeddings into compact Hausdorff spaces may be of particular interest. 

Since every compact Hausdorff space is a Tychonoff space, and every 

subspace of a Tychonoff space is Tychonoff, we conclude that any space 

possessing a Hausdorff compactification must be a Tychonoff space. In 

fact, the converse is also true; being a Tychonoff space is both necessary 

and sufficient for possessing a Hausdorff compactification. 

The fact that large and interesting classes of non-compact spaces do in 

fact have compactifications of particular sorts makes compactification a 

common technique in topology. 

 

Check In Progress 

Q 1. If X is Hausdorff, x ∈ X, and C is a compact subset of X with x /∈ 

C, then there exist disjoint neighborhoods U(x) and V (C). 

Solution 

……………………………………………………………………………

…….………………………………………………………………………

…………………….……………………………………………………… 

Q 2. In a Hausdorff space X, suppose U is a neighborhood of a point x 

and bd U is compact. Then there exists a neighborhood V of x such that 

the closure V¯ ⊆ U 

Solution 

……………………………………………………………………………

…….………………………………………………………………………

…………………….……………………………………………………… 
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13.4 STONE–ČECH COMPACTIFICATION 
 

Of particular interest are Hausdorff compactifications, i.e., 

compactifications in which the compact space is Hausdorff. A 

topological space has a Hausdorff compactification if and only if it 

is Tychonoff. In this case, there is a unique (up to homeomorphism) 

"most general" Hausdorff compactification, the Stone–Čech 

compactification of X, denoted by βX; formally, this exhibits 

the category of Compact Hausdorff spaces and continuous maps as 

a reflective subcategory of the category of Tychonoff spaces and 

continuous maps. 

"Most general" or formally "reflective" means that the space βX is 

characterized by the universal property that any continuous 

function from X to a compact Hausdorff space K can be extended to a 

continuous function from βX to K in a unique way. More explicitly, βX is 

a compact Hausdorff space containing X such that the induced 

topology on X by βX is the same as the given topology on X, and for any 

continuous map f:X → K, where K is a compact Hausdorff space, there is 

a unique continuous map g:βX → K for which g restricted to X is 

identically f. 

The Stone–Čech compactification can be constructed explicitly as 

follows: let C be the set of continuous functions from X to the closed 

interval [0,1]. Then each point in X can be identified with an evaluation 

function on C. Thus X can be identified with a subset of [0,1]
C
, the space 

of all functions from C to [0,1]. Since the latter is compact 

by Tychonoff's theorem, the closure of X as a subset of that space will 

also be compact. This is the Stone–Čech compactification. 

13.4.1 Spacetime Compactification 

Walter Benz and Isaak Yaglom have shown how stereographic 

projection onto a single-sheet hyperboloid can be used to provide 

a compactification for split complex numbers. In fact, the hyperboloid is 

part of a quadric in real projective four-space. The method is similar to 
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that used to provide a base manifold for group action of the conformal 

group of spacetime. 

 

13.4.2 Projective Space 

Real projective space RP
n
 is a compactification of Euclidean space R

n
. 

For each possible "direction" in which points in R
n
 can "escape", one 

new point at infinity is added (but each direction is identified with its 

opposite). The Alexandroff one-point compactification of R we 

constructed in the example above is in fact homeomorphic to RP
1
. Note 

however that the projective plane RP
2
 is not the one-point 

compactification of the plane R
2
 since more than one point is added. 

Complex projective space CP
n
 is also a compactification of C

n
; the 

Alexandroff one-point compactification of the plane C is (homeomorphic 

to) the complex projective line CP
1
, which in turn can be identified with 

a sphere, the Riemann sphere. 

Passing to projective space is a common tool in algebraic 

geometry because the added points at infinity lead to simpler 

formulations of many theorems. For example, any two different lines 

in RP
2
 intersect in precisely one point, a statement that is not true in R

2
. 

More generally, Bézout's theorem, which is fundamental in intersection 

theory, holds in projective space but not affine space. This distinct 

behavior of intersections in affine space and projective space is reflected 

in algebraic topology in the cohomology rings – the cohomology of 

affine space is trivial, while the cohomology of projective space is non-

trivial and reflects the key features of intersection theory (dimension and 

degree of a subvariety, with intersection being Poincaré dual to the cup 

product). 

Compactification of moduli spaces generally require allowing certain 

degeneracies – for example, allowing certain singularities or reducible 

varieties. This is notably used in the Deligne–Mumford compactification 

of the moduli space of algebraic curves. 
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Theorem 4. If X is locally compact, Hausdorff and normal and if there is 

a countable subset A = {x1, x2,... } of X such that ClXˆ (A) = A ∪ {∞}, 

then β(X) = Xˆ . Proof: By assumption, the point at infinity is the only 

limit point of A in Xˆ and therefore A is closed in X. Write A = B ∪ C, 

where B = {x1, x3, x5,... } and C = {x2, x4, x6,... }. Since X is normal 

and B and C are disjoint closed subsets of X, the Urysohn lemma implies 

there is a continuous f : X → [0, 1] such that f(B) = {0} and f(C) = {1}. 

This f is clearly not continuously extendable to Xˆ and thus β(X) = Xˆ . 

         An immediate consequence of the previous theorem is that if Xˆ is 

metrizable, or if X can be written as the countable union of compact sets 

(e.g., IR = ∪∞ n=1[−n, n]), then β(X) = Xˆ . It should be pointed out that 

the converse of the theorem is false. For example, if X is the disjoint 

union of two copies of SΩ, then the ―point at infinity‖ in Xˆ will be a 

point (denoted Ω) joining both copies of SΩ at their ―ends‖. If f is 

defined from X into the reals by f(x) = 0 for all x in one of the copies of 

SΩ, and f(x) = 1 for all x in the other, then certainly f cannot be 

continuously extended to Xˆ, and hence β(X) = Xˆ. But there is no 

(countable) sequence of points in Xˆ which can converge to Ω.  

         The requirement that X be normal is necessary in order to apply the 

Urysohn lemma. The following lemma allows us to ―weaken‖ that 

hypothesis to requiring that X be Lindel¨of. [Note that a space X is 

Lindel¨of if every open covering of X has a countable subcovering.] 

Lemma 1. If X is locally compact, Hausdorff and Lindel¨of, then X is 

normal.  

Proof: It is a standard sequence of exercises (see [1], p. 205, exercises 

6,7) to show that every locally compact, Hausdorff space is regular and 

that every regular, Lindel¨of space is normal. 

Theorem 5. If X is locally compact, Hausdorff and Lindel¨of, then β(X) 

= Xˆ .  

Proof: By theorem 4, we need only show that there is a countable subset 

A of X such that ClXˆ (A) = A ∪ {∞}. Since X is locally compact, for 

each x ∈ X, there is an open neighborhood Ux of x such that U¯x = 

ClX(Ux) is compact. Then U = {Ux : x ∈ X} is an open cover of X. 

Since X is Lindel¨of, there is a countable subcover, say {Ux1 , Ux2,... }. 
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For each positive integer n, let Vn = ∪n i=1Uxi (hence, of course, V¯n = 

ClX(Vn), which is compact) and choose yn ∈ X − V¯n. Let A = {y1, 

y2,... }. If x ∈ X − A, then x ∈ Uxn for some n, so Uxn is a neighborhood 

of x which does not contain any of yn, yn+1, yn+2,... . Since X is 

Hausdorff, we can find a neighborhood of x disjoint from A. Thus x ∈ 

ClX(A). Now, if C is a compact subset of X, (so that X − C is a 

neighborhood of ∞ in Xˆ), then there is a Vn such that C ⊆ Vn. Thus 

{yn, yn+1, yn+2,... } ⊆ (Xˆ − C); i.e., every neighborhood of ∞ in Xˆ , 

contains points of A. Hence ∞ ∈ ClXˆ (A), or ClXˆ (A) = A ∪ {∞}. 

       In general, trying to visualize or understand the Stone-Cech 

compactification of ˇ a topological space can be mind-boggling if not 

impossible. We have seen that this is not the case for SΩ. Next we 

calculate β(SΩ × X) where X is a compact space. First consider C(X, IR) 

= the collection of all continuous f : X → IR. 

 

13.5 PARACOMPACTNESS 
 

Let X be a topological space. 

 Definition. The space X is locally compact if each x ∈ X admits a 

compact neighborhood N. If X is locally compact and Hausdorff, then all 

compact sets in X are closed and hence if N is a compact neighborhood 

of x then N contains the closure the open int(N) around x. Hence, in such 

cases every point x ∈ X lies in an open whose closure is compact. Much 

more can be said about the local structure of locally compact Hausdorff 

spaces, though it requires some serious theorems in topology (such as 

Urysohn‘s lemma) which, while covered in basic topology books, are too 

much of a digression for us and are not necessary for our purposes. We 

record one interesting aspect of locally compact spaces: 

Lemma. If X is a locally compact Hausdorff space that is second 

countable, then it admits a countable base of opens {Un} with compact 

closure. 
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Proof. Let {Vn} be a countable base of opens. For each x ∈ X there 

exists an open Ux around x with compact closure, yet some Vn(x) 

contains x and is contained in Ux. The closure of Vn(x) is a closed subset 

of the compact Ux, and so V n(x) is also compact. Thus, the Vn‘s with 

compact closure are a countable base of opens with compact closure. 

Definition. An open covering {Ui} of X refines an open covering {Vj} 

of X if each Ui is contained in some (perhaps many) Vj . 

       A simple example of a refinement is a subcover, but refinements 

allow much greate flexibility: none of the Ui ‘s needs to be a Vj . For 

example, the covering of a metric space by open balls of radius 1 is 

refined by the covering by open balls of radius 1/2. We are interested in 

special refinements:  

Definition. An open covering {Ui} of X is locally finite if every x ∈ X 

admits a neighborhood N such that N ∩ Ui is empty for all but finitely 

many i. 

For example, the covering of R by open intervals (n−1, n+ 1) for n ∈ Z is 

locally finite, whereas the covering of (−1, 1) by intervals (−1/n, 1/n) (for 

n ≥ 1) barely fails to be locally finite: there is a problem at the origin (but 

nowhere else). 

Definition. A topological space X is paracompact if every open 

coverings admits a locally finite refinement. (It is traditional to also 

require paracompact spaces to be Hausdorff, as paracompactness is never 

used away from the Hausdorff setting, in contrast with compactness – 

though many mathematicians implicity require compact spaces to be 

Hausdorff too and they reserve a separate word (quasi-compact) for 

compactness without the assumption of the Hausdorff condition.) 

      Obviously any compact space is paracompact (as every open cover 

admits a finite subcover, let alone a locally finite refinement). Also, an 

arbitrary disjoint union ` Xi of paracompact spaces (given the topology 

wherein an open set is one that meets each Xi is an open subset) is again 

paracompact. Note that it is not the case that open covers of a 

paracompact space admit locally finite subcovers, but rather just locally 

finite refinements. Indeed, we saw at the outset that Rn is paracompact, 
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but even in the real line there exist open covers with no locally finite 

subcover: let Un = (−∞, n) for n ≥ 1. All Un‘s contain (−∞, 0), and any 

subcollection of Uni ‘s that covers R has to be infinite since each Un is 

―bounded on the right‖. Thus, no subcover can be locally finite near a 

negative number. 

In general, paracompactness is a slightly tricky property: there are 

counterexamples that show that an open subset of a paracompact 

Hausdorff space need not be paracompact. Thus, to prove that an open 

subset of Rn is paracompact we will have to use special features of Rn . 

However, just as closed subsets of compact sets are compact, closed 

subsets of paracompact spaces are paracompact; the argument is virtually 

the same as in the compact case (extend covers by using the complement 

of the closed set), so we leave the details to the reader. It is a non-trivial 

theorem in topology that any metric space is paracompact! This can be 

found in any introductory topology book, but we will not need it. Our 

interest in paracompact spaces is due to: 

Theorem . Any second countable Hausdorff space X that is locally 

compact is paracompact. 

Proof. Let {Vn} be a countable base of opens in X. Let {Ui} be an open 

cover of X for which we seek a locally finite refinement. Each x ∈ X lies 

in some Ui and so there exists a Vn(x) containing x with Vn(x) ⊆ Ui . 

The Vn(x) ‘s therefore consistute a refinement of {Ui} that is countable. 

Since the property of one open covering refining another is transitive, we 

therefore lose no generality by seeking locally finite refinements of 

countable covers. We can do better: by Lemma 2.2, we can assume that 

all V n are compact. Hence, we can restrict our attention to countable 

covers by opens Un for which Un is compact. Since closure commutes 

with finite unions, by replacing Un with ∪j≤nUj we preserve the 

compactness condition (as a finite union of compact subsets is compact) 

and so we can assume that {Un} is an increasing collection of opens with 

compact closure (with n ≥ 0). Since Un is compact yet is covered by the 

open Ui ‘s, for sufficiently large N we have Un ⊆ UN . If we recursively 

replace Un+1 with such a UN for each n, then we can arrange that Un ⊆ 

Un+1 for each n. Let K0 = U0 and for n ≥ 1 let Kn = Un − Un−1 = Un ∩ 
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(X − Un−1), so Kn is compact for every n (as it is closed in the compact 

Un) but for any fixed N we see that UN is disjoint from Kn for all n > N. 

Now we have a situation similar to the concentric shells in our earlier 

proof of paracompactness of Rn , and so we can carry over the argument 

from Euclidean spaces as follows. We seek a locally finite refinement of 

{Un}. For n ≥ 2 the open set Wn = Un+1 − Un−2 contains Kn, so for 

each x ∈ Kn there exists some Vm ⊆ Wn around x. There are finitely 

many such Vm‘s that actually cover the compact Kn, and the collection 

of Vm‘s that arise in this way as we vary n ≥ 2 is clearly a locally finite 

collection of opens in X whose union contains X − U0. Throwing in 

finitely many Vm‘s contained in U1 that cover the compact U0 thereby 

gives an open cover of X that refines {Ui} and is locally finite. 

13.6 SUMMARY 
 

We study covering and properties. We study orthocompact and its some 

examples. We study projective plane and its properties. We study space 

time compactification.  

13.7 KEYWORD 
 

COVERING : Carried out to protect an exposed person from an enemy 

ORTHOCOMPACT : is orthocompact if every open cover has a Q-

refinement. 

PROJECTIVE : Relating to the unconscious transfer of one's desires or 

emotions to another person 

13.8 QUESTIONS FOR REVIEW  
 

1 Any second countable Hausdorff space X that is locally 

compact is paracompact. 

2 Compact spaces are L−L− compact. Suppose XX is 

compact; XX is a neighborhood of each of its points 

implies XX is L−L− compact. 
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3  The usual real line RR is L−L− compact, since for 

each x∈Rx∈R, we have x∈(a,b)⊆[a,b]x∈(a,b)⊆[a,b]. 

Thus [a,b][a,b] is a neighbourhood of xx which is compact by the 

Heine-Boral theorem. This proves that RR is L−L− compact. But 

recall that RR is not compact. 

4 QQ and QcQc as a subspace of RR are not locally compact. 

5 A compact space is L−L− compact. 

6  If XX is a Hausdorff locally compact space, then for 

all x∈Xx∈X and for all neighbourhoods UU of xx, there exists a 

compact neighbourhood VV of xx such that V⊆UV⊆U. 

7 Let f:X→Yf:X→Y be an open continuous surjection. 

If XX is L−L− compact, the YY is L−L− compact. 

8 Local compactness is a closed hereditary property. 

9 X1, X2X1, X2 are L−L− compact if and only 

if X1×X2X1×X2 is L−L− compact. 
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13.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 1.4 

              Q 2 Check in Section 1 

Check in Progress-II 

Answer  Q. 1 Check in Section 2 

              Q 2 Check in Section 2 
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UNIT 14: COVERING SPACE AND 

UNIFORM SPACE 
 

STRUCTURE 

14.0 Objective 

14.1 Introduction Covering Space 

14.1.1 Definition and Basic Example 

14.1.2 Lifting 

 14.1.3 Maps between Covering Spaces 

 14.1.4 G-Covering 

14.2 The Universal cover and subgroups of the fundamental group 

            14.2.1 Uniform Space 

14.2.2 Comment 

            14.2.3 Uniform Properties  

  14.2.3.1 Uniform Continuity  

  14.2.3.2 Products and subspaces  

  14.2.3.3 Uniform Quotients 

  14.2.3.4 Completeness 

  14.2.3.5 Total Boundedness 

  14.2.3.6 Uniform Weight  

  14.2.3.7 Fine Uniformities 

14.3 Compactifications 

   14.3.1 Proximities 

14.3.2 Function Spaces 

14.4 Summary 

14.5 Keyword 

14.6 Questions for review  

14.7 Suggestion Reading And References 

14.8 Answer toCheck your Progress 

 

14.0 OBJECTIVE 
 

After study this topic we able to learn  

* Introduction covering space 
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* Learn Uniform space 

* Learn product and subspace 

* Learn Compactifications  

* Learn Total Boundedness and Uniform weight 

 

14.1 INTRODUCTION COVERING SPACE 

 

Given a topological space X, we‘re interested in spaces which ―cover‖ X 

in a nice way. Roughly speaking, a space Y is called a covering space of 

X if Y maps onto X in a locally homeomorphic way, so that the pre-

image of every point in X has the same cardinality. It turns out that the 

covering spaces of X have a lot to do with the fundamental group of X. 

The subgroups of π1(X) correspond exactly to the connected covering 

spaces of X. Also, for nice enough spaces X, there‘s a special covering 

space called the universal cover, on which π1(X) acts. Covering spaces 

are important not just for algebraic topology but also for differential 

geometry, Lie groups, Riemann surfaces, geometric group theory . . . 

In mathematics, more specifically algebraic topology, a covering 

map (also covering projection) is a continuous function 
[1]

 from 

a topological space  to a topological space  such that each point in  has 

an open neighbourhood evenly covered by  (as shown in the image); the 

precise definition is given below. In this case,  is called a covering 

space and  the base space of the covering projection. The definition 

implies that every covering map is a local homeomorphism. 

Covering spaces play an important role in homotopy theory, harmonic 

analysis, Riemannian geometry and differential topology. In Riemannian 

geometry for example, ramification is a generalization of the notion of 

covering maps. Covering spaces are also deeply intertwined with the 

study of homotopy groups and, in particular, the fundamental group. An 

important application comes from the result that, if  is a "sufficiently 

good" topological space, there is a bijection between the collection of all 

isomorphism classes of connected coverings of  and the conjugacy 

classes of subgroups of the fundamental group of . 
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14.1.1 Definition and Basic Examples  
Throughout, all spaces are topological spaces and all maps are 

continuous.  

Definition 1. A covering space or cover of a space X is a space Xe 

together with a map p : Xe → X satisfying the following condition: every 

point x ∈ X has an open neighborhood Ux ⊆ X such that p −1 (Ux) is a 

disjoint union of open sets, each of which is mapped by p 

homeomorphically onto Ux. You can visualize the pre-image of the 

neighborhood Ux as a ―stack of pancakes‖, each pancake being 

homeomorphic to Ux.  

Some more terminology: sometimes the space X is called the base space, 

the map p is called the covering map or projection, and the pre-image p 

−1 (x) of some point x in the base space is called the fiber over x. 

Examples.  

1. There‘s always the trivial cover: a space covers itself, with the 

covering map being the identity map. 

 2. The map p : R → S 1 given by p(t) = e it is a covering map, wrapping 

the real line round and round the circle. The pre-image of a little open arc 

in the circle is a collection of open intervals in the real line, offset by 

multiples of 2π. 

3. Another cover of the circle is the map p : S 1 → S 1 given by p(z) = z 

n , where n is a positive integer. This wraps the circle around itself n 

times.  

4. Consider the equivalence relation on R 2 given by (x, y) ∼ (x + m, y + 

n), where m and n are any integers. Let p : R 2 → R 2/∼ be the quotient 

map. Then the image of p is the torus obtained by identifying opposite 

sides of a square, and p is a covering map.  

5. The real projective plane RP 2 can be thought of in several equivalent 

ways: as the set of lines through the origin in R 3 , as S 2 with the 

equivalence relation x ∼ −x, and as the set of non-zero points of R 3 with 

the equivalence relation x ∼ λx, where λ is a non-zero scalar. If we select 
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the second way of thinking about RP 2 , then S 2 is a covering space for 

RP 2 , with the covering map being the quotient map.  

6. The figure-of-eight graph has lots of covering spaces, and I‘ll draw 

some of them on the board. 

             Given a neighborhood Ux in the base space, the fiber over each 

point in Ux must have the same cardinality. So, if the base space is 

connected, this cardinality is constant over the whole space. The 

cardinality of each fiber is then called the number of sheets of the 

covering. The cover of S 1 in Example 3 has n sheets, while the cover of 

RP 2 by S 2 is a two-sheeted covering. 

 

14.1.2 Liftings 
In this section p : Xe → X is always a covering space.  

        A lift of a map f : Y → X is a map ˜f : Y → Xe such that p◦ ˜f = f. 

There are several key results about existence and uniqueness of liftings, 

and these have important applications.  

        For instance, since a covering space is a topological space, it has a 

fundamental group. The following proposition relates the fundamental 

group of a covering space to the fundamental group of the base space, 

and is proved using liftings of homotopies. 

Proposition 2. Fix basepoints x0 ∈ X and xe0 ∈ p −1 (x0). Then the 

homomorphism  

           p∗ : π1(X, e xe0) → π1(X, x0)  

   is injective. So, we may identify π1(X, e xe0) with the subgroup 

p∗(π1(X, e xe0)) of π1(X, x0). The choice of basepoint does matter here: 

different choices of xe0 in the fiber over x0 will yield conjugate 

subgroups of π1(X, x0). 

Examples 

1. Let p : R → S 1 be the covering map p(t) = e it and, for each positive 

integer n, let pn : S 1 → S1 be the covering map pn(z) = z n . Then 
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π1(R, 0) is trivial, so its image under p∗ is the trivial subgroup of π(S 

1 , 1) = Z. The image of (pn)∗ is the subgroup nZ of Z. 2. Let p : S 2 

→ RP  

2 be the covering map which identifies antipodes. Since S 2 has trivial 

fundamental group, the image under p∗ is also trivial.  

2. The fundamental group of a covering space which is a graph can be 

calculated using the Seifert–Van Kampen Theorem. You can then use 

Proposition 2 to show that, for instance, the free group on two 

generators has subgroups which are free on three generators, and on 

countably many generators.  

Another important result on liftings concerns liftings of paths in the base 

space. 

Proposition 3. Let f : I → X be a path with starting point f(0) = x0. Then 

for each xe0 ∈ p −1 (x0), there is a unique lift ˜f : I → Xe so that ˜f(0) = 

xe0.  

        In particular, once we fix a basepoint x0 in X, then for each xe0 ∈ p 

−1 (x0), every loop in X based at x0 has a unique lift to a path in the 

covering space Xe starting at xe0. This is used to prove the following 

result.  

Proposition 4. When X and Xe are path-connected, the number of sheets 

of the covering space p : (X, e xe0) → (X, x0) equals the index of 

p∗(π1(X, e xe0)) in π1(X, x0). 

 

14.1.3 Maps between Covering Spaces 
Suppose p1 : Xe1 → X and p2 : Xe2 → X are two covering spaces. A 

homomorphism of covering spaces is a map f : Xe1 → Xe2 so that p1 = 

p2 ◦ f. An isomorphism of covering spaces is an invertible map (that is, 

homeomorphism) f : Xe1 → Xe2 so that p1 = p2 ◦ f. 

         An isomorphism from a covering space to itself is sometimes called 

a deck transformation or covering transformation (think of shuffling a 

deck of cards). Deck transformations permute fibers. The set of deck 
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transformations of a covering space forms a group under composition. 

By a unique lifting property, a deck transformation is completely 

determined by where it sends a single point. 

Examples. 

1. Each translation of the real line by an integer multiple of 2π is a deck 

transformation of the covering space p : R → S 1 , where p(t) = e it. 

The group of deck transformations is isomorphic to Z. 

2. Rotating the circle S 1 by an integer multiple of 2π/n is a deck 

transformation of the covering space z 7→ z n . The group of deck 

transformations is cyclic of order n. 

 3. Each translation of R2 by a vector (m, n), where m and n are 

integers, is a deck transformation of the covering space of the torus. 

The group of deck transformations is isomorphic to Z 2 . 

 Every space trivially covers itself. 

 A connected and locally path-connected topological space  has 

a universal cover if and only if it is semi-locally simply connected. 

  is the universal cover of the unit circle . 

 The spin group  is a double cover of the special orthogonal group and 

a universal cover when . The accidental, or exceptional 

isomorphisms for Lie groups then give isomorphisms between spin 

groups in low dimension and classical Lie groups. 

 The unitary group  has universal cover . 

 The n-sphere  is a double cover of real projective space  and is a 

universal cover for . 

 Every manifold has an orientable double cover that is connected if 

and only if the manifold is non-orientable. 

 The uniformization theorem asserts that every Riemann surface has a 

universal cover conformally equivalent to the Riemann sphere, the 

complex plane, or the unit disc. 

 The universal cover of a wedge of  circles is the Cayley graph of the 

free group on  generators, i.e. a Bethe lattice. 

https://en.wikipedia.org/wiki/Universal_cover
https://en.wikipedia.org/wiki/Semi-locally_simply_connected
https://en.wikipedia.org/wiki/Spin_group
https://en.wikipedia.org/wiki/Special_orthogonal_group
https://en.wikipedia.org/wiki/Exceptional_isomorphism
https://en.wikipedia.org/wiki/Exceptional_isomorphism
https://en.wikipedia.org/wiki/Unitary_group
https://en.wikipedia.org/wiki/N-sphere
https://en.wikipedia.org/wiki/Orientable_double_cover
https://en.wikipedia.org/wiki/Uniformization_theorem
https://en.wikipedia.org/wiki/Riemann_sphere
https://en.wikipedia.org/wiki/Cayley_graph
https://en.wikipedia.org/wiki/Bethe_lattice
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 The torus is a double cover of the Klein bottle. This can be seen 

using the polygon's for the torus and the Klein bottle, and observing 

that the double cover of the circle  (embedding into  sending ). 

 Every graph has a bipartite double cover. Since every graph is 

homotopic to a wedge of circles, its universal cover is a Cayley 

graph. 

 Every immersion from a compact manifold to a manifold of the same 

dimension is a covering of its image. 

 Infinite-fold abelian covering graphs of finite graphs are regarded as 

abstractions of crystal structures.
[6]

 

 Another effective tool for constructing covering spaces is using 

quotients by free finite group actions. 

 For example, the space  defined by the quotient of  (embedded into ) 

is defined by the quotient space via the -action . This space, called 

a lens space, has fundamental group  and has universal cover . 

For instance the diamond crystal as an abstract graph is the maximal 

abelian covering graph of the dipole graph D4 

 The map of affine schemes  forms a covering space with  as its group 

of deck transformations. This is an example of a cyclic Galois cover. 

 

14.1.4 G-Coverings 

Let G be a discrete group acting on the topological space X. This means 

that each element g of G is associated to a homeomorphism Hg of X onto 

itself, in such a way that Hg h is always equal to Hg ∘ Hh for any two 

elements g and h of G. (Or in other words, a group action of the 

group G on the space X is just a group homomorphism of the 

group G into the group Homeo(X) of self-homeomorphisms of X.) It is 

natural to ask under what conditions the projection from X to the orbit 

space X/G is a covering map. This is not always true since the action may 

have fixed points. An example for this is the cyclic group of order 2 

acting on a product X × X by the twist action where the non-identity 

element acts by (x, y) ↦ (y, x). Thus the study of the relation between the 

fundamental groups of X and X/G is not so straightforward. 

https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/Klein_bottle
https://en.wikipedia.org/wiki/Bipartite_double_cover
https://en.wikipedia.org/wiki/Covering_space#cite_note-6
https://en.wikipedia.org/wiki/Lens_space
https://en.wikipedia.org/wiki/Diamond_cubic
https://en.wikipedia.org/wiki/Dipole_graph
https://en.wikipedia.org/wiki/Spectrum_of_a_ring
https://en.wikipedia.org/wiki/%C3%89tale_fundamental_group
https://en.wikipedia.org/wiki/Discrete_group
https://en.wikipedia.org/wiki/Group_action_(mathematics)
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Orbit_space
https://en.wikipedia.org/wiki/Orbit_space
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However the group G does act on the fundamental groupoid of X, and so 

the study is best handled by considering groups acting on groupoids, and 

the corresponding orbit groupoids. The theory for this is set down in 

Chapter 11 of the book Topology and groupoids referred to below. The 

main result is that for discontinuous actions of a group G on a Hausdorff 

space X which admits a universal cover, then the fundamental groupoid 

of the orbit space X/G is isomorphic to the orbit groupoid of the 

fundamental groupoid of X, i.e. the quotient of that groupoid by the 

action of the group G. This leads to explicit computations, for example of 

the fundamental group of the symmetric square of a space. 

14.2 THE UNIVERSAL COVER AND 

SUBGROUPS OF THE FUNDAMENTAL 

GROUP 
 

We saw that the induced homomorphism from the fundamental group of 

a covering space to the fundamental group of the base space is injective. 

This leads to the question: can every subgroup of π1(X, x0) be realized 

as p∗(π1(Xe0, xe0)) for some covering space p : Xe → X and xe0 ∈ p −1 

(x0)? It turns out that the answer is yes if X is a reasonably nice space 

(path-connected, locally path-connected and semilocally simply 

connected, to be precise).  

To prove this, you first construct a universal cover : that is, a covering 

space Xe of X which is simply connected. The universal cover is unique 

up to isomorphism. 

Examples. The universal cover of the circle is the real line, of the torus 

is R 2 , of RP 2 is the sphere S 2 , and of the figure-of-eight graph is the 

infinite 4-valent tree.  

         Since the universal cover Xe is simply connected, π1(X, e xe0) is 

trivial, so its image under p∗ is the trivial subgroup of π1(X, x0). To 

realize all the other subgroups of π1(X, x0), you take quotients of the 

universal cover.  

        Another important feature of the universal cover is that the 

fundamental group of the base space acts on the universal cover by deck 
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transformations. The action is determined as follows. Take a basepoint 

x0 ∈ X and a preimage xe0 of x0 in the universal cover Xe. Then each 

element of π1(X, x0) is represented by a loop f : I → X based at x0. 

There is a unique lift ˜f : I → Xe starting at xe0. Then we define the 

action of the homotopy class [f] on xe0 by 

                             [f] · xe0 = ˜f(1).  

The quotient under this group action is the base space. 

The universal cover of a connected topological space  is a simply 

connected space  with a map  that is a covering map. 

If  is simply connected, i.e., has a trivial fundamental group, then it is 

its own universal cover. For instance, the sphere  is its own universal 

cover. The universal cover is always unique and, under very mild 

assumptions, always exists. In fact, the universal cover of a topological 

space  exists iff the space  is connected, locally pathwise-connected, 

and semilocally simply connected. 

Any property of  can be lifted to its universal cover, as long as it is 

defined locally. Sometimes, the universal covers with special structures 

can be classified. For example, a Riemannian metric on  defines a 

metric on its universal cover. If the metric is flat, then its universal cover 

is Euclidean space. Another example is the complex structure of 

a Riemann surface , which also lifts to its universal cover. By 

the uniformization theorem, the only possible universal covers for  are 

the open unit disk, the complex plane , or the Riemann sphere . 

The above left diagram shows the universal cover of the torus, i.e., the 

plane. A fundamental domain, shaded orange, can be identified with the 

torus. The real projective plane is the set of lines through the origin, and 

its universal cover is the sphere, shown in the right figure above. The 

only nontrivial deck transformation is the antipodal map. 

The compact Riemann surfaces with genuses  are -holed tori, and 

their universal covers are the unit disk. The figure above shows a 

hyperbolic regular octagon in the disk. With the colored edges identified, 

it is a fundamental domain for the double torus. Each hole has two loops, 

http://mathworld.wolfram.com/ConnectedSpace.html
http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/SimplyConnected.html
http://mathworld.wolfram.com/SimplyConnected.html
http://mathworld.wolfram.com/CoveringMap.html
http://mathworld.wolfram.com/SimplyConnected.html
http://mathworld.wolfram.com/FundamentalGroup.html
http://mathworld.wolfram.com/Iff.html
http://mathworld.wolfram.com/ConnectedSpace.html
http://mathworld.wolfram.com/LocallyPathwise-Connected.html
http://mathworld.wolfram.com/SemilocallySimplyConnected.html
http://mathworld.wolfram.com/RiemannianMetric.html
http://mathworld.wolfram.com/FlatManifold.html
http://mathworld.wolfram.com/EuclideanSpace.html
http://mathworld.wolfram.com/ComplexStructure.html
http://mathworld.wolfram.com/RiemannSurface.html
http://mathworld.wolfram.com/UniformizationTheorem.html
http://mathworld.wolfram.com/RiemannSphere.html
http://mathworld.wolfram.com/RealProjectivePlane.html
http://mathworld.wolfram.com/DeckTransformation.html
http://mathworld.wolfram.com/AntipodalMap.html
http://mathworld.wolfram.com/RiemannSurface.html
http://mathworld.wolfram.com/Genus.html
http://mathworld.wolfram.com/Torus.html
http://mathworld.wolfram.com/UnitDisk.html
http://mathworld.wolfram.com/FundamentalDomain.html
http://mathworld.wolfram.com/DoubleTorus.html
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and cutting along each loop yields two edges per loop, or eight edges in 

total. Each loop is also shown in a different color, and arrows are drawn 

to provide instructions for lining them up. The fundamental domain is in 

gray and can be identified with the double torus illustrated below. The 

above animation shows some translations of the fundamental domain 

by deck transformations, which form a Fuchsian group. They tile the disk 

by analogy with the square tiling the plane for the square torus. 

Figure 2.1 

Although it is difficult to visualize a hyperbolic regular octagon in the 

disk as a cut-up double torus, the illustration above attempts to portray 

this. It is unfortunate that no hyperbolic compact manifold with constant 

negative curvature, can be embedded in . As a result, this picture is not 

isometric to the hyperbolic regular octagon. However, the generators for 

the fundamental group are drawn in the same colors, and are examples of 

so-called cuts of a Riemann surface. 

Roughly speaking, the universal cover of a space is obtained by the 

following procedure. First, the space is cut open to make a simply 

connected space with edges, which then becomes a fundamental domain, 

as the double torus is cut to become a hyperbolic octagon or the square 

torus is cut open to become a square. Then a copy of the fundamental 

domain is added across an edge. The rule for adding a copy across an 

edge is that every point has to look the same as the original space, at least 

nearby. So the copies of the fundamental domain line up along edges 

which are identified in the original space, but more edges may also line 

up. Copies of the fundamental domain are added to the resulting space 

recursively, as long as there remains any edges. The result is a covering 

map with possibly infinitely many copies of a fundamental domain 

which is simply connected. 

http://mathworld.wolfram.com/FundamentalDomain.html
http://mathworld.wolfram.com/DoubleTorus.html
http://mathworld.wolfram.com/DeckTransformation.html
http://mathworld.wolfram.com/FuchsianGroup.html
http://mathworld.wolfram.com/SquareTorus.html
http://mathworld.wolfram.com/DoubleTorus.html
http://mathworld.wolfram.com/RiemannSurface.html
http://mathworld.wolfram.com/DoubleTorus.html
http://mathworld.wolfram.com/SquareTorus.html
http://mathworld.wolfram.com/SquareTorus.html
http://mathworld.wolfram.com/CoveringMap.html
http://mathworld.wolfram.com/CoveringMap.html
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Any other covering map of  is in turn covered by the universal cover 

of , . In this sense, the universal cover is the largest possible cover. In 

rigorous language, the universal cover has a universal property. 

If  is a covering map, then there exists a covering 

map  such that the composition of  and  is the projection 

from the universal cover to . 

Check In Progress 

Q. 1 Define G-Covering. 

Solution 
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……….……………………………………………………………………

………………………..…………………………………………………

………………………………………….…………………………………

………………………………………………………….. 

Q. 2 Define Uniform cover & Univarsal space. 

Solution 

……………………………………………………………………………

……….……………………………………………………………………

………………………..…………………………………………………

………………………………………….…………………………………

………………………………………………………….. 

 

14.2.2 Uniform Space 
A uniform space is a set with a uniform structure defined on it. A 

uniform structure (a uniformity) on a space X is defined by the 

specification of a system A of subsets of the product X×X. Here the 

system A must be a filter (that is, for any V1,V2 the 

intersection V1∩V2 is also contained in A, and if W⊃V, V∈A, 

then W∈A) and must satisfy the following axioms: 

U1) every set V∈A contains the diagonal Δ={(x,x)|x∈X}; 

U2) if V∈A, then V−1={(y,x)|(x,y)∈V}∈A; 

http://mathworld.wolfram.com/CoveringMap.html
http://mathworld.wolfram.com/UniversalProperty.html
http://mathworld.wolfram.com/CoveringMap.html
https://www.encyclopediaofmath.org/index.php/Filter
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U3) for any V∈A there is a W∈A such 

that W∘W⊂Vhere W∘W={(x,y)| there is 

a z∈X with (x,z)∈W,(z,y)∈W}W∘W={(x,y)| there is 

a z∈X with (x,z))∈W}. 

The elements of A are called entourages of the uniformity defined by A. 

A uniformity on a set X can also be defined by the specification of a 

system of coverings C on X satisfying the following axioms: 

C1) if α∈C and αα refines a covering β, then β∈C; 

C2) for any α1,α2∈C, there is a covering β∈C that star-refines 

both α1 and α2 (that is, for any x∈X all elements of β containing xx lie in 

certain elements of α1and α2. 

Coverings that belong to C are called uniform coverings of X (relative to 

the uniformity defined by C). 

These two methods of specifying a uniform structure are equivalent. For 

example, if the uniform structure on XX is given by a system of 

entourages A, then a system of uniform coverings CC of XX can be 

constructed as follows. For each V∈Athe 

family α(V)={V(x)|x∈V} (where V(x)={y|(x,y)∈V} is a covering of X. 

A covering αα belongs to C if and only if αα can be refined by a covering 

of the form α(V), V∈A. Conversely, if C is a system of uniform 

coverings of a uniform space, a system of entourages is formed by the 

sets of the form U={H×H|H∈α}U={H×H|H∈α}, α∈Cα∈C, and all the 

sets containing them. 

A uniform structure on XX can also be given via a system of pseudo-

metrics (cf. Pseudo-metric). Every uniformity on a set XX generates a 

topology T={G⊂X| for any x∈G there is a V∈A such 

that V(x)⊂G}T={G⊂X| for any x∈G there is a V∈A such that V(x)⊂G}. 

The properties of uniform spaces are generalizations of the uniform 

properties of metric spaces (cf. Metric space). If (X,ρ) is a metric space, 

then on X there is a uniformity generated by the metric ρρ. A system of 

entourages for this uniformity is formed by all sets containing sets of the 

form {(x,y)|ρ(x,y)<ε}{(x,y)|ρ(x,y)<ε}, ε>0ε>0. Here the topologies 

on X induced by the metric and the uniformity coincide. Uniform 

structures generated by metrics are called metrizable. 

https://www.encyclopediaofmath.org/index.php/Pseudo-metric
https://www.encyclopediaofmath.org/index.php/Metric_space
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Uniform spaces were introduced in 1937 by A. Weil [We] (by means of 

entourages; the definition of uniform spaces by means of uniform 

coverings was given in 1940, see [Tu]). However, the idea of the use of 

multiple star-refinement for the construction of functions appeared 

earlier with L.S. Pontryagin (see [Po]) (afterwards this idea was used in 

the proof of complete regularity of the topology of a separable uniform 

space). Initially, uniform spaces were used as tools for the study of the 

topologies (generated by them) (similar to the way a metric on a 

metrizable space was often used for the study of the topological 

properties of the space). However, the theory of uniform spaces is of 

independent interest, although closely connected with the theory of 

topological spaces. 

A mapping f:X→Y from a uniform space X into a uniform space Y is 

called uniformly continuous if for any uniform covering αα of Y the 

system f−1α={f−1U|U∈α} is a uniform covering of X. Every uniformly-

continuous mapping is continuous relative to the topologies generated by 

the uniform structures on X and Y. If the uniform structures 

on X and Y are induced by metrics, then a uniformly-continuous 

mapping f:X→Y turns out to be uniformly continuous in the classical 

sense as a mapping between metric spaces (cf. Uniform continuity). 

Of more interest is the theory of uniform spaces that satisfy the 

additional axiom of separation: 

U4) ⋂V∈AV=Δ⋂ (in terms of entourages), or 

C3) for any two points x,y∈X,, x≠y, there is an α∈C such that no element 

of αα simultaneously contains xx and yy (in terms of uniform coverings). 

From now on only uniform spaces equipped with a separating uniform 

structure will be considered. The topology on X generated by a 

separating uniformity is completely regular and, conversely, every 

completely-regular topology on Xis generated by some separating 

uniform structure. As a rule, there are many different uniformities 

generating the same topology on X. In particular, a metrizable topology 

can be generated by a non-metrizable separating uniformity. 

A uniform space (X,A) is metrizable if and only if A has a countable 

base. Here, a base of a uniformity is (in terms of entourages) any 

subsystem B⊂A satisfying the condition: For any V∈A there is 

https://www.encyclopediaofmath.org/index.php/Uniform_space#We
https://www.encyclopediaofmath.org/index.php/Uniform_space#Tu
https://www.encyclopediaofmath.org/index.php/Uniform_space#Po
https://www.encyclopediaofmath.org/index.php/Uniform_continuity
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a W∈B such that W⊂V, or (in terms of uniform coverings) a 

subsystem A⊂C such that for any α∈C there is a β∈A that refines α. The 

weight of a uniform space (X,A) is the least cardinality of a base of the 

uniformity A. 

Let MM be a subset of a uniform space (X,A). The system of 

entourages AM={(M×M)∩V|V∈A}} defines a uniformity on M. The 

pair (M,AM) is called a subspace of (X,A). A mapping f:X→Y from a 

uniform space (X,A)(X,A) into a uniform space (Y,A′) is called a 

uniform imbedding if ff is one-to-one and uniformly continuous and 

if f−1:(f(X,A′fX)→(X,A) is also uniformly continuous. 

A uniform space X is called complete if every Cauchy filter in X (that is 

a filter containing some element of each uniform covering) has a cluster 

point (that is, a point lying in the intersection of the closures of the 

elements of the filter). A metrizable uniform space is complete if and 

only if the metric generating its uniformity is complete. Any uniform 

space (X,A) can be uniformly imbedded as an everywhere-dense subset 

in a unique (up to a uniform isomorphism) complete uniform 

space (X~,A~), which is called the completion of (X,A)(X,A). The 

topology of the completion (X~,A~) of a uniform space (X,A) is compact 

if and only if AA is a pre-compact uniformity (that is, such that any 

uniform covering refines to a finite uniform covering). In this case the 

space X~ is a compactification of X and is called the Samuel extension 

of X relative to the uniformity A. For each 

compactification bX of X there is a unique pre-compact uniformity 

on X whose Samuel extension coincides with bX. Thus, all 

compactifications can be described in the language of pre-compact 

uniformities. On a compact space there is a unique uniformity (complete 

and pre-compact). 

Every uniformity A on a set X induces a proximity δ by the following 

formula: 

AδB⟺(A×B)∩V≠∅ 

for all V∈A. Here the topologies generated on X by the uniformity A and 

the proximity δδ coincide. Any uniformly-continuous mapping is 

proximity continuous relative to the proximities generated by the 

uniformities. As a rule, there are many different unifo mities generating 

https://www.encyclopediaofmath.org/index.php/Proximity
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the same proximity on X By the same token, the set of uniformities 

on X decomposes into equivalence classes (two uniformities are 

equivalent if the proximities they induce coincide). Each equivalence 

class of uniformities contains precisely one pre-compact uniformity; 

moreover, the Samuel extensions relative to these uniformities coincide 

with the Smirnov extensions (see Proximity space) relative to the 

proximity induced by the uniformities of the class. There is a natural 

partial order on the set of uniformities on XX: A>A′′ if A⊃A′. Among all 

uniformities on X generating a fixed topology there is a largest, the so-

called universal uniformity. It induces the Stone–Čech proximity on X. 

Every pre-compact uniformity is the smallest element in its equivalence 

class. If C is the system of uniform coverings of some uniformity on XX, 

then the system of uniform coverings of the equivalent pre-compact 

uniformity consists of those coverings of XX that refine a finite covering 

from CC. 

The product of uniform spaces (Xt,At)(Xt,At), t∈Tt∈T, is the uniform 

space (∏Xt,∏At)(∏Xt,∏At), where ∏At∏At is the uniformity 

on ∏Xt∏Xt with as base for the entourages sets of the form 

{({xt},{yt})|(xti,yti)∈Vti,i=1,…,n},{({xt},{yt})|(xti,yti)∈Vti,i=1,…,n}, 

ti∈T,Vti∈Ati,i=1,2,…ti∈T,Vti∈Ati,i=1,2,… 

The topology induced on ∏Xt∏Xt by the uniformity ∏At∏At coincides 

with the Tikhonov product of the topologies of the spaces XtXt. The 

projections of the product onto the components are uniformly 

continuous. Every uniform space of weight ηη can be imbedded in a 

product of ηη copies of a metrizable uniform space. 

The topology of a metrizable uniform space is paracompact, by Stone's 

theorem. However, Isbell's problem on the uniform paracompactness of 

metrizable uniform spaces has been solved negatively. An example of a 

metrizable uniform space having a uniform covering with no locally 

finite uniform refinement has been constructed [Sh]. 

In the dimension theory of uniform spaces, the uniform dimension 

invariants δdδd and ΔdΔd, defined by analogy with the topological 

dimension dimdim (δdδd using finite uniform coverings and ΔdΔd using 

https://www.encyclopediaofmath.org/index.php/Proximity_space
https://www.encyclopediaofmath.org/index.php/Tikhonov_product
https://www.encyclopediaofmath.org/index.php/Uniform_space#Sh
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all uniform coverings), and the uniform inductive 

dimension δIndδInd are basic. The dimension δIndδInd is defined by 

analogy with the large inductive dimension IndInd, by induction relative 

to the dimensions of proximity partitions between distant (in the sense of 

the proximity induced by the uniformity) sets. Here, a set HH is called a 

proximity partition between AA and BB (where AδBAδB) if for any δδ-

neighbourhood UU of HH such that U∩(A∪B)≠∅U∩(A∪B)≠∅ one  

Various generalizations of uniform spaces have been obtained by 

weakening the axioms of a uniformity. Thus, in the axiomatics of a 

quasi-uniformity (see [Cs]) the symmetry axiom is excluded. For the 

definition of a generalized uniformity (see [Ku]) (an ff-uniformity), 

uniform families of subsets of X, which in general are not coverings, are 

used instead of uniform coverings (most of these families turn out to be 

everywhere-dense in the topology generated by the ff-uniformity). One 

of the generalizations of a uniformity — the so-called θθ-uniformity — 

is connected with the presence of the topology on a uniform space.  

  

14.2.2 Comments 

Pre-compact uniform spaces are also called totally bounded, and 

universal uniformities are also called fine uniformities. 

Another description of k-spaces is as follows: A Hausdorff space X is 

a kk-space if and only if it satisfies the following condition: A subset 

of X is closed in X if and only if its intersection with every compact 

subset of X is closed. 

The construction of a metrizable uniform space that is not uniformly 

paracompact (i.e. has no base of (uniformly) locally finite uniform 

coverings) was done independently by E.V. Shchepin [Sh] and J. 

Pelant [Pe]. In [Pe] it is also shown that in some models of set theory 

(ZFC), the uniform coverings of a uniform space of power at most 1 need 

not form a base for a uniformity. 

 

Check In Progress 

Q. 1 Define Uniform Space. 

https://www.encyclopediaofmath.org/index.php/Uniform_space#Cs
https://www.encyclopediaofmath.org/index.php/Uniform_space#Ku
https://www.encyclopediaofmath.org/index.php/Uniform_space#Sh
https://www.encyclopediaofmath.org/index.php/Uniform_space#Pe
https://www.encyclopediaofmath.org/index.php/Uniform_space#Pe
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Solution 

……………………………………………………………………………

……….……………………………………………………………………

………………………..…………………………………………………

………………………………………….…………………………………

………………………………………………………….. 

Q. 2 Define Uniform cover & Univarsal space. 

Solution 

……………………………………………………………………………

……….……………………………………………………………………

………………………..…………………………………………………

………………………………………….…………………………………

………………………………………………………….. 

 

14.2.3 Uniform Properties  
When trying to generalize metric concepts to wider classes of spaces one 

encounters the countability barrier: almost no non-trivial uncountable 

construction preserves metrizability. The category of uniform spaces and 

uniformly continuous maps provides a convenient place to carry out 

these generalizations.  

        Below we invariably let X be our uniform space, with U its family 

of entourages and U the family of uniform covers.  

14.2.3.1 Uniform Continuity  

A map f :(X,U) → (Y,V) between uniform spaces is uniformly 

continuous if ( f × f ) −1 [V] ∈ U whenever V ∈ V, equivalently, if { f −1 

[A]: A ∈ A} ∈ U whenever A ∈ V. A uniformly continuous map is also 

continuous with respect to the uniform topologies and the converse is, as 

in the metric case, true for compact Hausdorff spaces.  

       A bijection that is uniformly continuous both ways is a uniform 

isomorphism. A uniform property then is a property of uniform spaces 

that is preserved by uniform isomorphisms.  
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14.2.3.2 Products and subspaces  

It is straightforward to define a uniform structure on a subset Y of a 

uniform space X: simply intersect the entourages with Y × Y (or trace 

the uniform covers on Y ). To define a product uniformity one may 

follow the construction of the product topology and define a subbase for 

it. Given a family {(Xi,Ui)}i∈I of uniform spaces define a family of 

entourages in the square of Q i Xi using the projections πi : {(πi × πi) −1 

[U]: U ∈ Ui, i ∈ I}.  

       These constructions have the right categorical properties, so that we 

obtain subobjects and products in the category of uniform spaces and 

uniformly continuous maps. The uniform topology derived from the 

product and subspace uniformities are the product and subspace 

topologies derived from the original uniform topologies, respectively. 

14.2.3.3 Uniform Quotients 

A map q : X → Q between uniform spaces is a uniform quotient map if it 

is onto and has the following universality property: whenever f : Q → Y 

is a map to a uniform space Y then f is uniformly continuous if f ◦ q is. 

Every uniformly continuous map f : X → Y admits a factorization f = f0 

◦ q with q a uniform quotient map and f0 a (uniformly continuous) 

injective map. 

In analogy with the topological situation one can, given a surjection f 

from a uniform space X onto a set Y , define the quotient uniformity on 

Y to be the finest uniformity that makes f uniformly continuous. The 

resulting map is uniformly quotient and all uniform quotient maps arise 

in this way. 

The uniform topology of a quotient uniformity is not always the quotient 

topology of the original uniform topology: if X is completely regular but 

not normal, as witnessed by the disjoint closed sets F and G, then 

identifying F to one point results in a space which is Hausdorff but not 

(completely) regular, hence the quotient uniformity from the fine 

uniformity (see below) does not generate the quotient topology. There is 

even a canonical construction that associates to every separated uniform 

space X a uniform space Y with a uniform quotient map q : X → Y and 

such that the uniform topology of Y is discrete. 
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Uniform quotient maps behave different from topological quotient maps 

in other respects as well: every product of uniform quotient maps is again 

a uniform quotient map. 

14.2.3.4 Completeness 

We say that X is complete (and U or U a complete uniformity) if every 

Cauchy filter converges. A filter F is Cauchy if for every V ∈ U there is 

F ∈ F with F × F ⊆ V or, equivalently, if F ∩ A 6= ∅ for all A ∈ U. 

Closed subspaces and products of complete spaces are again complete. 

Every uniform space has a completion, this is a complete uniform space 

that contains a dense and uniformly isomorphic copy of X. As underlying 

set of a completion one can take the set eX of minimal Cauchy filters. 

Every entourage U of U is extended to Ue = {(F,G): (∃F ∈ F )(∃G ∈ 

G)(F × G ⊆ U)}; the family {Ue: U ∈ U} generates a complete 

uniformity on eX. If x ∈ X then its neighbourhood filter Fx is a minimal 

Cauchy filter and x 7→ Fx is a uniform embedding. 

As in the case of metric completion the completion of a separated 

uniform space is unique up to uniform isomorphism. 

Using the canonical correspondence between nets and filters (see the 

article on Convergence) one can define a Cauchy net to be a net whose 

associated filter is Cauchy. This is equivalent to a definition more akin to 

that of a Cauchy sequence: A net (tα)α∈D is Cauchy if for every 

entourage U there is an α such that (tβ,tγ ) ∈ U whenever β, γ > α. 

14.2.3.5 Total Boundedness 

We say X is totally bounded or precompact if for every entourage U (or 

uniform cover A) there is a finite set F such that U[F] = X (or St(F,A) = 

X). Subspaces and products of precompact spaces are again precompact.  

A metrizable space has a compatible totally bounded metric iff it is 

separable. A uniformizable space always has a compatible totally 

bounded uniformity; indeed, for any uniform space (X,U) the family of 

all finite uniform covers is a base for a (totally bounded) uniformity pU 

with the same uniform topology, this uniformity is the precompact 

reflection of U. 
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The metric theorem that equates compactness with completeness plus 

total boundedness remains valid in the uniform setting; likewise a 

Tychonoff space is compact if every compatible uniformity is complete. 

It is not true that a Tychonoff space is compact iff every compatible 

uniformity is totally bounded. The ordinal space ω1 provides a 

counterexample: it is not compact and it has only one compatible 

uniformity (the family of all neighbourhoods of the diagonal), which 

necessarily is totally bounded.  

14.2.3.6 Uniform Weight  

The weight, w(X,U), is the minimum cardinality of a base. A uniformity 

U can be generated by κ pseudometrics iff w(X,U) 6 κ · ℵ0 iff the 

separated quotient bX admits a uniform embedding into a product of κ 

many (pseudo)metric spaces (with its product uniformity). In particular: 

a uniformity is generated by a single pseudometric iff its weight is 

countable.  

         The uniform weight u(X) of a Tychonoff space X is the minimum 

weight of a compatible uniformity. This is related to other cardinal 

functions by the inequalities u(x) 6 w(X) 6 u(X)·c(X). The first follows 

by considering a compactification of the same weight as X, the second 

from the fact that each pseudometric contributes a ζ -discrete family of 

open sets to a base for the open sets. The uniform weight is related to the 

metrizability degree: m(X) is the minimum κ such that X has an open 

base that is the union of κ many discrete families, whereas u(X) is the 

minimum κ such that X has an open base that is the union of κ many 

discrete families of cozero sets. Thus m(X) 6 u(X); equality holds for 

normal spaces and is still an open problem for Tychonoff spaces. 

14.2.3.7 Fine Uniformities 

Every family {Ui}i of uniformities has a supremum W i Ui . In terms of 

entourages it is generated by the family of all finite intersections of 

elements of S i Ui , i.e., S i Ui is used as a subbase. If all the Ui are 

compatible with a fixed topology T then so is W i Ui . This implies that 

every Tychonoff space admits a finest uniformity, the fine uniformity or 

universal uniformity, it is the one generated by the family of all normal 
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covers or by the family of all pseudometrics d f defined above. The fine 

uniformity is denoted U f . 

One says that a uniformity U itself is fine (or a topologically fine 

uniformity) if it is the fine uniformity of its uniform topology ηU . 

The equivalence of full normality and paracompactness combined with 

the constructions of pseudometrics described above yield various 

characterizations of the covers that belong to the fine uniformity: they are 

the covers that have locally finite (or ζ -locally finite or ζ -discrete) 

refinements consisting of cozero sets. From this it follows that the 

precompact reflection of the fine uniformity is generated by the finite 

cozero covers. 

Continuity Versus Uniform Continuity 

Every continuous map from a fine uniform space to a uniform space (or 

pseudometric space) is uniformly continuous; this property characterizes 

fine uniform spaces. Uniform spaces on which every continuous real-

valued function is uniformly continuous are called UC-spaces. A metric 

UCspace is also called an Atsuji space. 

The precompact reflection of a fine uniformity yields a space where all 

bounded continuous real-valued functions are uniformly continuous, 

these are also called BU-spaces. 

14.3 COMPACTIFICATIONS 
 

There is a one-to-one correspondence between the families of 

compactifications of a Tychonoff space and the compatible totally 

bounded uniformities. If γ X is a compactification of X then the 

uniformity that X inherits from γ X is compatible and totally bounded. 

Conversely, if U is a compatible totally bounded uniformity on X then its 

completion is a compactification of X, the Samuel compactification of 

(X,U). The correspondence is order-preserving: the finer the uniformity 

the larger the compactification. Consequently the compactification that 

corresponds to the precompact reflection Ufin of the fine uniformity is 
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exactly the Cech–Stone ˇ compactification. It also follows that a space 

has exactly one compatible uniformity iff it is almost compact. 

14.3.1 Proximities 
There is also a one-to-one correspondence between the proximities and 

precompact uniformities. 

Indeed, a uniformity U determines a proximity δU by A δU B iff U[A] ∩ 

U[B] 6= ∅ for every entourage U (intuitively: proximal sets have 

distance zero). 

Conversely, a proximity δ determines a uniformity Uδ : the family of sets 

X 2 \ (A × B) with A 6δ B forms a subbase for Uδ . This uniformity is 

always precompact and, in fact, UδU is the precompact reflection of U. 

The Samuel compactification of (X,Uδ) is also known as the Smirnov 

compactification of (X, δ) 

14.3.2 Function Spaces 
Uniformities also allow one to formulate and prove theorems on uniform 

convergence and continuity in a general setting. Thus, given a uniform 

space (Y,V) and a set (or space) X one can define various uniformities on 

the set Y X of all maps from X to Y . Let A be a family of subsets of X. 

For V ∈ V and A ∈ A one defines the entourage EA,V to be the set {( f, 

g): (∀x ∈ A)(( f (x), g(x)) ∈ V)}. The family of sets EA,V serves as a 

subbase for a uniformity. The corresponding uniform topology is called 

the topology of uniform convergence on members of A. 

 

14.4 SUMMARY  
 

We study countable space and its properties. We study covering space 

and uniform space. We study some examples of covering space. We 

study function space.  

14.5 KEYWORD  
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COUNTABLE : that can form a plural or be used with the indefinite 

article 

COMPACT : Closely and neatly packed together; dense 

CAYLEY : A pirate that scours the seven seas. If you are unlucky 

enough to meet a Cayley on the ocean, expect to be in Davy Jones locker 

within a matter of moments. 

 

14.6 QUESTIONS FOR REVIEW 
 

1 A uniform space of countable type has a basis of (countable) uniformly 

locally finite uniform coverings. 

3 Let X be a completely regular space. 

 1. The completion of X in the uniformity C(X) is (υX, C(υX)).  

2. The completion of X in the uniformity C (X) is (βX, C(βX)). 

4 1) A closed subset of a complete uniform space is complete.  

2) A complete subspace of a Hausdorff uniform space is closed. 

5 The uniform completion of a (Hausdorff ) uniform space is itself a 

(Hausdorff ) uniform space. 

1 Let X1, X2 be complete Hausdorff uniform space, and let 

A1, A2 be dense subsets of X1, X2 respectively. If A1 and 

A2 are uniformly equivalent then so are X1 and X2. 

2 Every uniform space is uniformly isomorphic to a dense 

subspace of a complete uniform space. Each Hausdorff 

uniform space is uniformly isomorphic to a dense subspace 

of a complete Hausdorff uniform space. 

3 A uniform space is compact iff it is complete and totally 

bounded. 



Notes 

170 

14.7 SUGGESTION READING AND 

REFERENCES 

 Brown, Ronald (2006). Topology and Groupoids. Charleston, S. 

Carolina: Booksurge LLC. ISBN 1-4196-2722-8. See chapter 10. 

 Chernavskii, A.V. (2001) [1994], "Covering", in Hazewinkel, 

Michiel (ed.), Encyclopedia of Mathematics, Springer 

Science+Business Media B.V. / Kluwer Academic 

Publishers, ISBN 978-1-55608-010-4 

 Farkas, Hershel M.; Kra, Irwin (1980). Riemann Surfaces (2nd ed.). 

New York: Springer. ISBN 0-387-90465-4. See chapter 1 for a simple 

review. 

 Hatcher, Allen (2002). Algebraic Topology. Cambridge University 

Press. ISBN 0-521-79540-0. 

 Higgins, Philip J. (1971). Notes on categories and groupoids. 

Mathematical Studies. 32. London-New York-Melbourne: Van 

Nostrand Reinhold. MR 0327946. 

 Jost, Jürgen (2002). Compact Riemann Surfaces. New York: 

Springer. ISBN 3-540-43299-X. See section 1.3 

 Massey, William (1991). A Basic Course in Algebraic Topology. New 

York: Springer. ISBN 0-387-97430-X. See chapter 5. 

 Munkres, James R. (2000). Topology (2. ed.). Upper Saddle River, 

NJ: Prentice Hall. ISBN 0131816292. 

 Brazas, Jeremy (2012). "Semicoverings: a generalization of covering 

space theory". Homology, Homotopy and Applications. 14 (1): 33–

63. arXiv:1108.3021. doi:10.4310/HHA.2012.v14.n1.a3. MR 295466

6. 

 Ellis, Graham. "Homological Algebra Programming". 

 Ellis, Graham (2004). "Computing group resolutions". Journal of 

Symbolic Computation. 38: 1077–1118. 

 Spanier, Edwin (December 1994). Algebraic Topology. 

Springer. ISBN 0-387-94426-5. 

 

14.8 ANSWER TO CHECK YOUR 

 

https://en.wikipedia.org/wiki/Ronald_Brown_(mathematician)
http://groupoids.org.uk/topgpds.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-4196-2722-8
https://www.encyclopediaofmath.org/index.php?title=Covering&oldid=13627
https://en.wikipedia.org/wiki/Michiel_Hazewinkel
https://en.wikipedia.org/wiki/Michiel_Hazewinkel
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55608-010-4
https://en.wikipedia.org/wiki/Irwin_Kra
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-90465-4
https://en.wikipedia.org/wiki/Allen_Hatcher
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-521-79540-0
http://138.73.27.39/tac/reprints/articles/7/tr7abs.html
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=0327946
https://en.wikipedia.org/wiki/J%C3%BCrgen_Jost
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-540-43299-X
https://en.wikipedia.org/wiki/William_S._Massey
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-97430-X
https://en.wikipedia.org/wiki/James_Munkres
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0131816292
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1108.3021
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.4310%2FHHA.2012.v14.n1.a3
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=2954666
https://www.ams.org/mathscinet-getitem?mr=2954666
http://hamilton.nuigalway.ie/Hap/www/
https://en.wikipedia.org/wiki/Journal_of_Symbolic_Computation
https://en.wikipedia.org/wiki/Journal_of_Symbolic_Computation
https://en.wikipedia.org/wiki/Edwin_Spanier
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-94426-5


Notes 

171 

PROGRESS 
 

Check in Progress-I 

Answer  Q. 1 Check in Section 1.4 

              Q 2 Check in Section 1 

Check in Progress-II 

Answer  Q. 1 Check in Section 2 

              Q 2 Check in Section 2 

  

  

  
  
  
     

 


